版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆淄博市重點中學(xué)數(shù)學(xué)高二第二學(xué)期期末達(dá)標(biāo)測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.完成一項工作,有兩種方法,有5個人只會用第一種方法,另外有4個人只會用第二種方法,從這9個人中選1個人完成這項工作,則不同的選法共有()A.5種 B.4種 C.9種 D.20種2.在復(fù)平面內(nèi),向量對應(yīng)的復(fù)數(shù)是,向量對應(yīng)的復(fù)數(shù)是,則向量對應(yīng)的復(fù)數(shù)對應(yīng)的復(fù)平面上的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.用秦九韶算法求次多項式,當(dāng)時,求需要算乘方、乘法、加法的次數(shù)分別為()A. B. C. D.4.已知函數(shù),若,則實數(shù)a的取值范圍是()A. B. C. D.5.若雙曲線的離心率大于2,則該雙曲線的虛軸長的取值范圍是()A. B. C. D.6.學(xué)校組織同學(xué)參加社會調(diào)查,某小組共有5名男同學(xué),4名女同學(xué)。現(xiàn)從該小組中選出3位同學(xué)分別到A,B,C三地進(jìn)行社會調(diào)查,若選出的同學(xué)中男女均有,則不同安排方法有()A.70種 B.140種 C.420種 D.840種7.如圖,線段AB=8,點C在線段AB上,且AC=2,P為線段CB上一動點,點A繞著C旋轉(zhuǎn)后與點B繞點P旋轉(zhuǎn)后重合于點D,設(shè)CP=x,△CPD的面積為f(x).求f(x)的最大值().A.B.2C.3 D.8.設(shè)是含數(shù)的有限實數(shù)集,是定義在上的函數(shù),若的圖象繞原點逆時針旋轉(zhuǎn)后與原圖象重合,則在以下各項中,的可能取值只能是()A. B. C. D.9.甲,乙,丙,丁四人參加完某項比賽,當(dāng)問到四人誰得第一時,回答如下:甲:“我得第一名”;乙:“丁沒得第一名”;丙:“乙沒得第一名”;丁:“我得第一名”.已知他們四人中只有一個說真話,且只有一人得第一.根據(jù)以上信息可以判斷得第一名的人是()A.甲B.乙C.丙D.丁10.已知函數(shù)在恰有兩個零點,則實數(shù)的取值范圍是()A. B.C. D.11.函數(shù)在定義域內(nèi)可導(dǎo),的圖象如圖所示,則導(dǎo)函數(shù)可能為()A. B.C. D.12.將函數(shù)圖象上的點向右平移個單位長度得到點,若位于函數(shù)的圖象上,則()A.,的最小值為 B.,的最小值為C.,的最小值為 D.,的最小值為二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中,常數(shù)項為5670,則展開式中各項系數(shù)的和為____.14.設(shè)集合,選擇的兩個非空子集和,要使中最小的數(shù)大于中最大的數(shù),則不同的選擇方法共有________種.15.在平面直角坐標(biāo)系xOy中,P是曲線y=x+4x(x>0)上的一個動點,則點P到直線x+y=016.已知向量與的夾角為60°,||=2,||=1,則|+2|=______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)(1)若展開式中的常數(shù)項為60,求展開式中除常數(shù)項外其余各項系數(shù)之和;(2)已知二項式(是虛數(shù)單位,)的展開的展開式中有四項的系數(shù)為實數(shù),求的值.18.(12分)已知函數(shù)f(x)=x3+ax2(1)求函數(shù)f(x)的解析式及單調(diào)區(qū)間;(2)求函數(shù)f(x)在區(qū)間-3,2的最大值與最小值.19.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)當(dāng)時,,記函數(shù)在上的最大值為,證明:.20.(12分)已知矩陣,.(1)求;(2)在平面直角坐標(biāo)系中,求直線在對應(yīng)的變換作用下所得直線的方程.21.(12分)某校為“中學(xué)數(shù)學(xué)聯(lián)賽”選拔人才,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:分?jǐn)?shù)不小于本次考試成績中位數(shù)的具有復(fù)賽資格,某校有900名學(xué)生參加了初賽,所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖.(1)求獲得復(fù)賽資格應(yīng)劃定的最低分?jǐn)?shù)線;(2)從初賽得分在區(qū)間的參賽者中,利用分層抽樣的方法隨機(jī)抽取7人參加學(xué)校座談交流,那么從得分在區(qū)間與各抽取多少人?(3)從(2)抽取的7人中,選出4人參加全市座談交流,設(shè)表示得分在中參加全市座談交流的人數(shù),學(xué)校打算給這4人一定的物質(zhì)獎勵,若該生分?jǐn)?shù)在給予500元獎勵,若該生分?jǐn)?shù)在給予800元獎勵,用Y表示學(xué)校發(fā)的獎金數(shù)額,求Y的分布列和數(shù)學(xué)期望。22.(10分)選修4-4:坐標(biāo)系與參數(shù)方程以直角坐標(biāo)系的原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)若直線的參數(shù)方程為(為參數(shù)),設(shè)點,直線與曲線相交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】
分成兩類方法相加.【題目詳解】會用第一種方法的有5個人,選1個人完成這項工作有5種選擇;會用第二種方法的有4個人,選1個人完成這項工作有4種選擇;兩者相加一共有9種選擇,故選C.【題目點撥】本題考查分類加法計數(shù)原理.2、C【解題分析】
先求,再確定對應(yīng)點所在象限【題目詳解】,對應(yīng)點為,在第三象限,選C.【題目點撥】本題考查向量線性運算以及復(fù)數(shù)幾何意義,考查基本分析求解能力,屬基礎(chǔ)題.3、D【解題分析】求多項式的值時,首先計算最內(nèi)層括號內(nèi)一次多項式的值,即然后由內(nèi)向外逐層計算一次多項式的值,即..….這樣,求n次多項式f(x)的值就轉(zhuǎn)化為求n個一次多項式的值.∴對于一個n次多項式,至多做n次乘法和n次加法故選D.4、D【解題分析】由函數(shù),可得,所以函數(shù)為奇函數(shù),又,因為,所以,所以函數(shù)為單調(diào)遞增函數(shù),因為,即,所以,解得,故選D.點睛:本題考查了函數(shù)的單調(diào)性、奇偶性和函數(shù)不等式的求解問題,其中解答中函數(shù)的奇偶性和函數(shù)的單調(diào)性,轉(zhuǎn)化為不等式是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,對于解函數(shù)不等式:首先根據(jù)函數(shù)的單調(diào)性和奇偶性把不等式轉(zhuǎn)化為的形式,然后根據(jù)函數(shù)的單調(diào)性去掉“”,轉(zhuǎn)化為具體的不等式(組),此時要注意與的取值應(yīng)在外層函數(shù)的定義域內(nèi)是試題的易錯點.5、C【解題分析】
根據(jù)離心率大于2得到不等式:計算得到虛軸長的范圍.【題目詳解】,,,故答案選C【題目點撥】本題考查了雙曲線的離心率,虛軸長,意在考查學(xué)生的計算能力.6、C【解題分析】
將情況分為2男1女和2女1男兩種情況,相加得到答案.【題目詳解】2男1女時:C52女1男時:C共有420種不同的安排方法故答案選C【題目點撥】本題考查了排列組合的應(yīng)用,將情況分為2男1女和2女1男兩種情況是解題的關(guān)鍵.7、A【解題分析】試題分析:利用三角形的構(gòu)成條件,建立不等式,可求x的取值范圍;三角形的周長是一個定值8,故其面積可用海倫公式表示出來,再利用基本不等式,即可求f(x)的最大值.解:(1)由題意,DC=2,CP=x,DP=6-x,根據(jù)三角形的構(gòu)成條件可得x+6-x>2,2+6-x>x,2+x>6-x,解得2<x<4;三角形的周長是一個定值8,故其面積可用海倫公式表示出來,即f(x)=當(dāng)且僅當(dāng)4-x=-2+x,即x=3時,f(x)的最大值為,故選A.考點:函數(shù)類型點評:本題考查根據(jù)實際問題選擇函數(shù)類型,本題中求函數(shù)解析式用到了海倫公式,8、B【解題分析】
利用函數(shù)的定義即可得到結(jié)果.【題目詳解】由題意得到:問題相當(dāng)于圓上由12個點為一組,每次繞原點逆時針旋轉(zhuǎn)個單位后與下一個點會重合.我們可以通過代入和賦值的方法當(dāng)f(1)=,,0時,此時得到的圓心角為,,0,然而此時x=0或者x=1時,都有2個y與之對應(yīng),而我們知道函數(shù)的定義就是要求一個x只能對應(yīng)一個y,因此只有當(dāng)x=,此時旋轉(zhuǎn),此時滿足一個x只會對應(yīng)一個y,故選B.【題目點撥】本題考查函數(shù)的定義,即“對于集合A中的每一個值,在集合B中有唯一的元素與它對應(yīng)”(不允許一對多).9、B【解題分析】分析:分別假設(shè)甲、乙、丙、丁得第一名,逐一分析判斷即可.詳解:若甲得第一名,則甲、乙、丙說了真話,丁說了假話,不符合題意;若乙得第一名,則乙說了真話,甲、丙、丁說了假話,符合題意;若丙得第一名,則乙、丙說了真話,甲、丁說了假話,不符合題意;若丁得第一名,則丙、丁說了真話,甲、乙說了假話,不符合題意點睛:本題考查推理論證,考查簡單的合情推理等基礎(chǔ)知識,考查邏輯推理能力,屬于基礎(chǔ)題.10、B【解題分析】
本題可轉(zhuǎn)化為函數(shù)與的圖象在上有兩個交點,然后對求導(dǎo)并判斷單調(diào)性,可確定的圖象特征,即可求出實數(shù)的取值范圍.【題目詳解】由題意,可知在恰有兩個解,即函數(shù)與的圖象在上有兩個交點,令,則,當(dāng)可得,故時,;時,.即在上單調(diào)遞減,在上單調(diào)遞增,,,,因為,所以當(dāng)時,函數(shù)與的圖象在上有兩個交點,即時,函數(shù)在恰有兩個零點.故選B.【題目點撥】已知函數(shù)有零點(方程有根)求參數(shù)值常用的方法:(1)分離參數(shù)法:先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決;(2)數(shù)形結(jié)合:先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后觀察求解.11、D【解題分析】
根據(jù)函數(shù)的單調(diào)性判斷出導(dǎo)函數(shù)函數(shù)值的符號,然后結(jié)合所給的四個選項進(jìn)行分析、判斷后可得正確的結(jié)論.【題目詳解】由圖象可知,函數(shù)在時是增函數(shù),因此其導(dǎo)函數(shù)在時,有(即函數(shù)的圖象在軸上方),因此排除A、C.從原函數(shù)圖象上可以看出在區(qū)間上原函數(shù)是增函數(shù),所以,在區(qū)間上原函數(shù)是減函數(shù),所以;在區(qū)間上原函數(shù)是增函數(shù),所以.所以可排除C.故選D.【題目點撥】解題時注意導(dǎo)函數(shù)的符號與函數(shù)單調(diào)性之間的關(guān)系,即函數(shù)遞增(減)時導(dǎo)函數(shù)的符號大(?。┯诹?,由此可判斷出導(dǎo)函數(shù)圖象與x軸的相對位置,從而得到導(dǎo)函數(shù)圖象的大體形狀.12、A【解題分析】由題意得由題意得所以,因此當(dāng)時,的最小值為,選A.點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.二、填空題:本題共4小題,每小題5分,共20分。13、256【解題分析】
根據(jù)二項式展開式的通項公式求得,再用賦值法求出各項系數(shù)的和.【題目詳解】由二項式的展開式的通項公式得,則所以所以所以再令得展開式中各項系數(shù)的和故答案為【題目點撥】本題考查二項式展開式中的特定項和各項系數(shù)和,屬于中檔題.14、【解題分析】試題分析:若集合中分別有一個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有三個元素,則選法種數(shù)有種;若集合中有一個元素,集合中有四個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有一個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有兩個元素,集合中有三個元素,則選法種數(shù)有種;若集合中有三個元素,集合中有一個元素,則選法種數(shù)有種;若集合中有三個元素,集合中有兩個元素,則選法種數(shù)有種;若集合中有四個元素,集合中有一個元素,則選法種數(shù)有種;總計有種.故答案應(yīng)填:.考點:組合及組合數(shù)公式.【方法點睛】解法二:集合中沒有相同的元素,且都不是空集,從個元素中選出個元素,有種選法,小的給集合,大的給集合;從個元素中選出個元素,有種選法,再分成兩組,較小元素的一組給集合,較大元素的一組給集合,共有種方法;從個元素中選出個元素,有種選法,再分成兩組,較小元素的一組給集合,較大元素的一組給集合,共有種方法;從個元素中選出個元素,有種選法,再分成兩組,較小元素的一組給集合,較大元素的一組給集合,共有種方法;總計為種方法.根據(jù)題意,中最小的數(shù)大于中最大的數(shù),則集合中沒有相同的元素,且都不是空集,按中元素數(shù)目這和的情況,分種情況討論,分別計算其選法種數(shù),進(jìn)而相加可得答案.本題考查組合數(shù)公式的運用,注意組合與排列的不同,進(jìn)而區(qū)別運用,考查分類討論的數(shù)學(xué)思想,屬于壓軸題.15、4.【解題分析】
將原問題轉(zhuǎn)化為切點與直線之間的距離,然后利用導(dǎo)函數(shù)確定切點坐標(biāo)可得最小距離【題目詳解】當(dāng)直線x+y=0平移到與曲線y=x+4x相切位置時,切點Q即為點P到直線x+y=0由y'=1-4x2即切點Q(2則切點Q到直線x+y=0的距離為2+3故答案為:4.【題目點撥】本題考查曲線上任意一點到已知直線的最小距離,滲透了直觀想象和數(shù)學(xué)運算素養(yǎng).采取導(dǎo)數(shù)法和公式法,利用數(shù)形結(jié)合和轉(zhuǎn)化與化歸思想解題.16、【解題分析】
∵平面向量與的夾角為,∴.∴故答案為.點睛:(1)求向量的夾角主要是應(yīng)用向量的數(shù)量積公式.(2)常用來求向量的模.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)或1【解題分析】
(1)求展開式的通項,根據(jù)常數(shù)項為60解得a的值,然后在原解析式中代入x=1求得各項系數(shù)之和,進(jìn)而求出結(jié)果.(2)求出展開式的通項,因為展開式中有四項的系數(shù)為實數(shù),所以r的取值為0,2,4,6,則可得出n的所有的可能的取值.【題目詳解】解:(1)展開式的通項為,常數(shù)項為,由,,得.令,得各項系數(shù)之和為.所以除常數(shù)項外其余各項系數(shù)之和為.(2)展開式的通項為,因為展開式中有四項的系數(shù)為實數(shù),且,,所以或1.【題目點撥】本題考查二項式展開式的通項,考查求二項式特定項的系數(shù),以及虛數(shù)單位的周期性,屬于基礎(chǔ)題.18、(1)f(x)=x3+94x2-3x;f(x)單調(diào)增區(qū)間是-∞,-2,【解題分析】
(1)由題得f'-2=0f'12=0即a=【題目詳解】(1)因為f(x)=x3+a由f'-2∴fxf'x令f'x>0?x>12或所以單調(diào)增區(qū)間是-∞,-2,12(2)由(1)可知,x-3,-2-2-2,11f'+0-0+f遞增極大遞減極小遞增極小值f12而f-3可得fx【題目點撥】(1)本題主要考查利用導(dǎo)數(shù)研究函數(shù)的極值和最值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間,意在考查學(xué)生對這些知識的掌握水平和分析推理能力.(2)求函數(shù)在閉區(qū)間上的最值,只要比較極值和端點函數(shù)值的大小.19、(1)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)見解析.【解題分析】
(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)性即可;(2)對求導(dǎo),得,因為,所以,令,求導(dǎo)得在上單調(diào)遞增,,使得,進(jìn)而得在上單調(diào)遞增,在上單調(diào)遞減;所以,令,求導(dǎo)得在上單調(diào)遞增,進(jìn)而求得m的范圍.【題目詳解】(1)因為,所以,當(dāng)時,;當(dāng)時,,故的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為.(2)當(dāng)時,,則,當(dāng)時,,令,則,所以在上單調(diào)遞增,因為,,所以存在,使得,即,即.故當(dāng)時,,此時;當(dāng)時,,此時.即在上單調(diào)遞增,在上單調(diào)遞減.則.令,,則.所以在上單調(diào)遞增,所以,.故成立.【題目點撥】本題考查了利用導(dǎo)數(shù)求函數(shù)的單調(diào)性和取值范圍,也考查了構(gòu)造新函數(shù),轉(zhuǎn)化思想,屬于中檔題.20、(1);(2).【解題分析】
分析:(1)直接根據(jù)逆矩陣公式計算即可(2)由,即解得,即.詳解:(1)由題知,所以,根據(jù)逆矩陣公式,得.(2)設(shè)由上的任意一點在作用下得到上對應(yīng)點.由,即解得,因為,所以,即.即直線的方程為.點睛:(1)逆矩陣計算公式是解第一問關(guān)鍵,要會掌握其運算公式(2)一直線在對應(yīng)的變換作用下所得直線的方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設(shè)計師工作計劃
- 2024年體育用品銷售員提成及促銷活動合同3篇
- 2024年建筑節(jié)能施工員聘用合同3篇
- 初中暑假學(xué)習(xí)計劃
- 高爐爐渣綜合利用工程可行性研究報告
- 三年級教學(xué)工作計劃5篇
- 2022中學(xué)班主任個人工作計劃
- 小學(xué)體育工作總結(jié)
- 公司助理個人實習(xí)工作
- 六年級畢業(yè)演講稿范文集錦七篇
- 《數(shù)學(xué)物理方法》期末測試卷及答案
- 《上帝擲骰子嗎:量子物理史話》導(dǎo)讀學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 鐵路工務(wù)勞動安全
- 儺戲面具制作課程設(shè)計
- 滬科版九年級物理下冊教案全冊
- 2024中國華電集團(tuán)限公司校招+社招高頻難、易錯點練習(xí)500題附帶答案詳解
- 歷史期中復(fù)習(xí)課件八年級上冊復(fù)習(xí)課件(統(tǒng)編版)
- 智能工廠梯度培育行動實施方案
- 保護(hù)性約束完整版本
- 23J916-1 住宅排氣道(一)
- AD域控規(guī)劃方案
評論
0/150
提交評論