版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆湖南省衡陽(yáng)縣數(shù)學(xué)高二下期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項(xiàng)1.考生要認(rèn)真填寫(xiě)考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書(shū)寫(xiě)在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.下列參數(shù)方程可以用來(lái)表示直線的是()A.(為參數(shù)) B.(為參數(shù))C.(為參數(shù)) D.(為參數(shù))2.已知?jiǎng)ta,b,c的大小關(guān)系是()A.a(chǎn)>b>c B.b>a>c C.a(chǎn)>c>b D.c>b>a3.已知函數(shù),若,則的最大值是()A. B.- C. D.--4.七巧板是我們祖先的一項(xiàng)創(chuàng)造,被譽(yù)為“東方魔板”,它是由五塊等腰直角三角形(兩塊全等的小三角形、一塊中三角形和兩塊全等的大三角形)、一塊正方形和一塊平行四邊形組成的.如圖是一個(gè)用七巧板拼成的正方形,現(xiàn)從該正方形中任取一點(diǎn),則此點(diǎn)取自黑色部分的概率是A. B.C. D.5.若過(guò)點(diǎn)可作兩條不同直線與曲線段C:相切,則m的取值范圍是()A. B. C. D.6.從4名男生和2名女生中任選3人參加演講比賽,用表示所選3人中女生的人數(shù),則為()A.0 B.1 C.2 D.37.某地區(qū)空氣質(zhì)量監(jiān)測(cè)資料表明,一天的空氣質(zhì)量為優(yōu)良的概率是0.75,連續(xù)兩天為優(yōu)良的概率是0.6,已知某天的空氣質(zhì)量為優(yōu)良,則隨后一天的空氣質(zhì)量為優(yōu)良的概率是()A.0.8 B.0.75 C.0.6 D.0.458.雙曲線的焦點(diǎn)坐標(biāo)是A. B. C. D.9.“干支紀(jì)年法”是中國(guó)歷法上自古以來(lái)使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”?!疤旄伞币浴凹住弊珠_(kāi)始,“地支”以“子”字開(kāi)始,兩者按干支順序相配,組成了干支紀(jì)年法,其相配順序?yàn)椋杭鬃?、乙丑、丙寅…癸酉,甲戌、乙亥、丙子…癸未,甲申、乙酉、丙戌…癸巳,…,共得?0個(gè)組合,稱六十甲子,周而復(fù)始,無(wú)窮無(wú)盡。2019年是“干支紀(jì)年法”中的己亥年,那么2026年是“干支紀(jì)年法”中的A.甲辰年 B.乙巳年 C.丙午年 D.丁未年10.函數(shù)的周期,振幅,初相分別是()A. B. C. D.11.一個(gè)袋子中有4個(gè)紅球,2個(gè)白球,若從中任取2個(gè)球,則這2個(gè)球中有白球的概率是A. B. C. D.12.已知雙曲線C:x216-yA.6x±y=0 B.C.x±2y=0 D.2x±y=0二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)據(jù)的方差為1,則數(shù)據(jù)的方差為_(kāi)___.14.已知橢圓與雙曲線具有相同的焦點(diǎn),,且在第一象限交于點(diǎn),設(shè)橢圓和雙曲線的離心率分別為,,若,則的最小值為_(kāi)_________.15.從雙曲線x2a2-y2b2=1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為16.某地區(qū)共有4所普通高中,這4所普通高中參加2018年高考的考生人數(shù)如下表所示:學(xué)校高中高中高中高中參考人數(shù)80012001000600現(xiàn)用分層抽樣的方法在這4所普通高中抽取144人,則應(yīng)在高中中抽取的學(xué)生人數(shù)為_(kāi)______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù)有兩個(gè)不同的零點(diǎn),.(1)求的取值范圍;(2)求證:.18.(12分)已知函數(shù).(1)若在處取得極值,求的單調(diào)遞減區(qū)間;(2)若在區(qū)間內(nèi)有極大值和極小值,求實(shí)數(shù)的取值范圍.19.(12分)在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線,極坐標(biāo)方程分別為,.(Ⅰ)和交點(diǎn)的極坐標(biāo);(Ⅱ)直線的參數(shù)方程為(為參數(shù)),與軸的交點(diǎn)為,且與交于,兩點(diǎn),求.20.(12分)如圖,正四棱柱的底面邊長(zhǎng),若與底面所成的角的正切值為.(1)求正四棱柱的體積;(2)求異面直線與所成的角的大?。?1.(12分)中石化集團(tuán)獲得了某地深海油田區(qū)塊的開(kāi)采權(quán),集團(tuán)在該地區(qū)隨機(jī)初步勘探了部分兒口井,取得了地質(zhì)資料.進(jìn)入全面勘探時(shí)期后,集團(tuán)按網(wǎng)絡(luò)點(diǎn)來(lái)布置井位進(jìn)行全面勘探.由于勘探一口井的費(fèi)用很高,如果新設(shè)計(jì)的井位與原有井位重合或接近,便利用舊井的地質(zhì)資料,不必打這口新井,以節(jié)約勘探費(fèi)用.勘探初期數(shù)據(jù)資料見(jiàn)如表:(Ⅰ)1~6號(hào)舊井位置線性分布,借助前5組數(shù)據(jù)求得回歸直線方程為y=6.5x+a,求a,并估計(jì)y的預(yù)報(bào)值;(Ⅱ)現(xiàn)準(zhǔn)備勘探新井7(1,25),若通過(guò)1、3、5、7號(hào)井計(jì)算出的b,a的值(b,a精確到0.01)相比于(Ⅰ)中(參考公式和計(jì)算結(jié)果:b=(Ⅲ)設(shè)出油量與勘探深度的比值k不低于20的勘探并稱為優(yōu)質(zhì)井,那么在原有井號(hào)1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是優(yōu)質(zhì)井的概率.22.(10分)已知矩陣,.(1)求;(2)在平面直角坐標(biāo)系中,求直線在對(duì)應(yīng)的變換作用下所得直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
選項(xiàng)A:利用加減消元法消參,并求出的取值范圍,即可判斷出所表示的圖形;選項(xiàng)B:利用加減消元法消參,并求出的取值范圍,即可判斷出所表示的圖形;選項(xiàng)C:利用加減消元法消參,并求出的取值范圍即可判斷出所表示的圖形;選項(xiàng)D:利用同角的三角函數(shù)關(guān)系式進(jìn)行消參即即可判斷出所表示的圖形,最后選出正確答案.【題目詳解】選項(xiàng)A:,而,所以參數(shù)方程A表示的是直線;選項(xiàng)B:,而,所以參數(shù)方程B表示的是射線;選項(xiàng)C:,而,所以參數(shù)方程C表示的是線段;選項(xiàng)D:,所以參數(shù)方程D表示的是單位圓,故選A.【題目點(diǎn)撥】本題考查了參數(shù)方程化為普通方程,并判斷普通方程所表示的平面圖形,求出每個(gè)參數(shù)方程中橫坐標(biāo)的取值范圍是解題的關(guān)鍵.2、D【解題分析】
對(duì)于看成冪函數(shù),對(duì)于與的大小和1比較即可【題目詳解】因?yàn)樵谏蠟樵龊瘮?shù),所以,由因?yàn)椋?,,所以,所以選擇D【題目點(diǎn)撥】本題主要考查了指數(shù)、對(duì)數(shù)之間大小的比較,常用的方法:1、通常看成指數(shù)、對(duì)數(shù)、冪函數(shù)比較.2、和0、1比較.3、A【解題分析】
設(shè),可分別用表示,進(jìn)而可得到的表達(dá)式,構(gòu)造函數(shù),通過(guò)求導(dǎo)判斷單調(diào)性可求出的最大值.【題目詳解】設(shè),則,則,,故.令,則,因?yàn)闀r(shí),和都是減函數(shù),所以函數(shù)在上單調(diào)遞減.由于,故時(shí),;時(shí),.則當(dāng)時(shí),取得最大值,.即的最大值為.故答案為A.【題目點(diǎn)撥】構(gòu)造函數(shù)是解決本題的關(guān)鍵,考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與最值,考查了學(xué)生分析問(wèn)題、解決問(wèn)題的能力與計(jì)算能力,屬于難題.4、A【解題分析】設(shè),則.∴,∴所求的概率為故選A.5、D【解題分析】
設(shè)切點(diǎn)為,寫(xiě)出切線方程為,把代入,關(guān)于的方程在上有兩個(gè)不等實(shí)根,由方程根的分布知識(shí)可求解.【題目詳解】設(shè)切點(diǎn)為,,則切線方程為,在切線上,可得,函數(shù)在上遞增,在上遞減,,又,,∴如果有兩解,則.故選:D.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的幾何意義,考查方程根的分布問(wèn)題。由方程根的個(gè)數(shù)確定參數(shù)取值范圍,可采用分離參數(shù)法,轉(zhuǎn)化為直線與函數(shù)圖象交點(diǎn)個(gè)數(shù)問(wèn)題。6、B【解題分析】
先由題意得到的可能取值為,分別求出其對(duì)應(yīng)概率,進(jìn)而可求出其期望.【題目詳解】由題意,的可能取值為,由題中數(shù)據(jù)可得:,,,所以.故選B【題目點(diǎn)撥】本題主要考查離散型隨機(jī)變量的期望,熟記期望的概念,會(huì)求每個(gè)事件對(duì)應(yīng)的概率即可,屬于??碱}型.7、A【解題分析】
試題分析:記“一天的空氣質(zhì)量為優(yōu)良”,“第二天空氣質(zhì)量也為優(yōu)良”,由題意可知,所以,故選A.考點(diǎn):條件概率.8、C【解題分析】分析:由題意求出,則,可得焦點(diǎn)坐標(biāo)詳解:由雙曲線,可得,故雙曲線的焦點(diǎn)坐標(biāo)是選C.點(diǎn)睛:本題考查雙曲線的焦點(diǎn)坐標(biāo)的求法,屬基礎(chǔ)題.9、C【解題分析】
按照題中規(guī)則依次從2019年列舉到2026年,可得出答案?!绢}目詳解】根據(jù)規(guī)則,2019年是己亥年,2020年是庚子年,2021年是辛丑年,2022年是壬寅年,2023年是癸卯年,2024年是甲辰年,2025年是乙巳年,2026年是丙午年,故選:C?!绢}目點(diǎn)撥】本題考查合情推理的應(yīng)用,理解題中“干支紀(jì)年法”的定義,并找出相應(yīng)的規(guī)律,是解本題的關(guān)鍵,考查邏輯推理能力,屬于中等題。10、C【解題分析】
利用求得周期,直接得出振幅為,在中令求得初相.【題目詳解】依題意,,函數(shù)的振幅為,在中令求得初相為.故選C.【題目點(diǎn)撥】本小題主要考查中所表示的含義,考查三角函數(shù)周期的計(jì)算.屬于基礎(chǔ)題.其中表示的是振幅,是用來(lái)求周期的,即,要注意分母是含有絕對(duì)值的.稱為相位,其中稱為初相.還需要知道的量是頻率,也即是頻率是周期的倒數(shù).11、B【解題分析】
先計(jì)算從中任取2個(gè)球的基本事件總數(shù),然后計(jì)算這2個(gè)球中有白球包含的基本事件個(gè)數(shù),由此能求出這2個(gè)球中有白球的概率.【題目詳解】解:一個(gè)袋子中有4個(gè)紅球,2個(gè)白球,將4紅球編號(hào)為1,2,3,4;2個(gè)白球編號(hào)為5,1.從中任取2個(gè)球,基本事件為:{1,2},{1,3},{1,4},{1,5},{1,1},{2,3},{2,4},{2,5},{2,1},{3,4},{3,5},{3,1},{4,5},{4,1},{5,1},共15個(gè),而且這些基本事件的出現(xiàn)是等可能的.用A表示“兩個(gè)球中有白球”這一事件,則A包含的基本事件有:{1,5},{1,1},{2,5},{2,1},{3,5},{3,1},{4,5},{4,1},{5,1}共9個(gè),這2個(gè)球中有白球的概率是.故選B.【題目點(diǎn)撥】本題考查概率的求法,考查古典概型、排列組合等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.12、C【解題分析】
根據(jù)雙曲線的性質(zhì),即可求出?!绢}目詳解】令x216雙曲線C的漸近線方程為x±2y=0,故選C?!绢}目點(diǎn)撥】本題主要考查雙曲線漸近線方程的求法。二、填空題:本題共4小題,每小題5分,共20分。13、9【解題分析】
根據(jù)方差的線性變化公式計(jì)算:方差為,則的方差為.【題目詳解】因?yàn)榉讲顬?,則的方差為,【題目點(diǎn)撥】本題考查方差的線性變化,難度較易.如果已知方差為,則的方差為,這可用于簡(jiǎn)便計(jì)算方差.14、.【解題分析】分析:通過(guò)橢圓與雙曲線的定義,用和表示出的長(zhǎng)度,根據(jù)余弦定理建立的關(guān)系式;根據(jù)離心率的定義表示出兩個(gè)離心率的平方和,利用基本不等式即可求得最小值。詳解:,所以解得在△中,根據(jù)余弦定理可得代入得化簡(jiǎn)得而所以的最小值為點(diǎn)睛:本題考查了圓錐曲線的綜合應(yīng)用。結(jié)合余弦定理、基本不等式等對(duì)橢圓、雙曲線的性質(zhì)進(jìn)行逐步分析,主要是對(duì)圓錐曲線的“交點(diǎn)”問(wèn)題重點(diǎn)分析和攻破,屬于難題。15、b-a【解題分析】試題分析:如圖所示,設(shè)雙曲線的右焦點(diǎn)為F1,連接PF1,OM,OT,則PF-PF1=2a,在RtΔFTO中,OF=c,OT=a,所以FT=OF2所以,所以MO=12PF1=考點(diǎn):1.雙曲線的定義;2.直線與圓相切;3.數(shù)形結(jié)合的應(yīng)用.16、24【解題分析】
計(jì)算出高中人數(shù)占總?cè)藬?shù)的比例,乘以得到在高中抽取的學(xué)生人數(shù).【題目詳解】應(yīng)在高中抽取的學(xué)生人數(shù)為.【題目點(diǎn)撥】本小題主要考查分層抽樣,考查頻率的計(jì)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)見(jiàn)解析【解題分析】分析:(1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論的范圍求出函數(shù)的單調(diào)區(qū)間,從而求出的范圍即可;(2)構(gòu)造函數(shù),則可證當(dāng)時(shí),在上,有,即.將代入上面不等式中即可證明.詳解:(1),若,則,在上單調(diào)遞增,至多有一個(gè)零點(diǎn),舍去;則必有,得在上遞減,在上遞增,要使有兩個(gè)不同的零點(diǎn),則須有.(嚴(yán)格來(lái)講,還需補(bǔ)充兩處變化趨勢(shì)的說(shuō)明:當(dāng)時(shí),;當(dāng)時(shí),).(2)構(gòu)造函數(shù),則.當(dāng)時(shí),,但因式的符號(hào)不容易看出,引出輔助函數(shù),則,得在上,當(dāng)時(shí),,即,則,即,,得在上,有,即.將代入上面不等式中得,又,,在上,故,.點(diǎn)睛:本題考查了導(dǎo)數(shù)的綜合應(yīng)用及恒成立問(wèn)題,同時(shí)考查了數(shù)形結(jié)合的思想應(yīng)用,屬于難題.18、(1);(2)【解題分析】
分析:(1)由,可得,利用,即,可得,從而可得結(jié)果;(2)在內(nèi)有極大值和極小值,等價(jià)于在內(nèi)有兩不等實(shí)根,結(jié)合二次函數(shù)的圖象與性質(zhì)列不等式求解即可.詳解:,(1)∵在處取得極值,∴,∴,∴,∴,令,則,∴,∴函數(shù)的單調(diào)遞減區(qū)間為.(2)∵在內(nèi)有極大值和極小值,∴在內(nèi)有兩不等實(shí)根,對(duì)稱軸,∴,即,∴.點(diǎn)睛:本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性與極值,以及一元二次方程根與系數(shù)的關(guān)系,屬于中檔題.對(duì)于一元二次方程根與系數(shù)的關(guān)系的題型常見(jiàn)解法有兩個(gè):一是對(duì)于未知量為不做限制的題型可以直接運(yùn)用判別式解答(本題屬于這種類型);二是未知量在區(qū)間上的題型,一般采取列不等式組(主要考慮判別式、對(duì)稱軸、的符號(hào))的方法解答.19、(1)(2)見(jiàn)解析【解題分析】試題分析:(1)聯(lián)立,極坐標(biāo)方程,解出,反代得,即得和交點(diǎn)的極坐標(biāo);(2)先利用將極坐標(biāo)方程化為直接坐標(biāo)方程,再由直線參數(shù)方程幾何意義得,因此將直線的參數(shù)方程代入直角坐標(biāo)方程,利用韋達(dá)定理得,且,因此.試題解析:(Ⅰ)(方法一)由,極坐標(biāo)方程分別為,’化為平面直角坐標(biāo)系方程分為.得交點(diǎn)坐標(biāo)為.即和交點(diǎn)的極坐標(biāo)分別為.(方法二)解方程組所以,化解得,即,所以和交點(diǎn)的極坐標(biāo)分別為.(II)(方法一)化成普通方程解得因?yàn)?,所?(方法二)把直線的參數(shù)方程:(為參數(shù)),代入得,,所以.20、(1)(2)【解題分析】
(1)是與底面所成的角,所以,可得,在用柱體體積公式即可求得答案;(2)因?yàn)檎睦庵?可得,所以是異面直線與所成的角.【題目詳解】(1)如圖,連接正四
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)院業(yè)務(wù)副院長(zhǎng)職責(zé)(五篇)
- 網(wǎng)絡(luò)課程設(shè)計(jì)的分類
- 網(wǎng)頁(yè)課程設(shè)計(jì)摘要模板
- 網(wǎng)上書(shū)店c 課程設(shè)計(jì)
- 微機(jī)原理通訊錄課程設(shè)計(jì)
- 聯(lián)想記憶課程設(shè)計(jì)
- 電話禮儀課程設(shè)計(jì)
- 職工系統(tǒng)Delphi課程設(shè)計(jì)
- 家政保潔公司營(yíng)業(yè)員服務(wù)總結(jié)
- 美的物流課程設(shè)計(jì)
- (八省聯(lián)考)2025年高考綜合改革適應(yīng)性演練 語(yǔ)文試卷(含答案解析)
- 數(shù)字媒體技術(shù)應(yīng)用基礎(chǔ)知識(shí)單選題及答案解析
- GB/T 45002-2024水泥膠砂保水率測(cè)定方法
- 2025年高考?xì)v史復(fù)習(xí)之小題狂練300題(選擇題):世界多極化與經(jīng)濟(jì)全球化(20題)
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之1:0 引言(雷澤佳編制-2025B0)
- 2024版環(huán)衛(wèi)清潔班車租賃服務(wù)協(xié)議3篇
- 生產(chǎn)安全事故事件管理知識(shí)培訓(xùn)課件
- 項(xiàng)目施工單位與當(dāng)?shù)卣按迕竦膮f(xié)調(diào)措施
- 藥劑科工作人員的專業(yè)提升計(jì)劃
- 2024-2025學(xué)年度第一學(xué)期二年級(jí)語(yǔ)文寒假作業(yè)第二十一天
- 2024年《論教育》全文課件
評(píng)論
0/150
提交評(píng)論