版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆陽(yáng)江市重點(diǎn)中學(xué)高二數(shù)學(xué)第二學(xué)期期末經(jīng)典模擬試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在區(qū)間上隨機(jī)選取一個(gè)實(shí)數(shù),則事件的概率為()A. B. C. D.2.()A.2 B.1 C.0 D.3.芻薨(),中國(guó)古代算術(shù)中的一種幾何形體,《九章算術(shù)》中記載“芻薨者,下有褒有廣,而上有褒無(wú)廣.芻,草也.薨,屋蓋也.”翻譯為“底面有長(zhǎng)有寬為矩形,頂部只有長(zhǎng)沒有寬為一條棱,芻薨字面意思為茅草屋頂”,如圖,為一芻薨的三視圖,其中正視圖為等腰梯形,側(cè)視圖為等腰三角形,則搭建它(無(wú)底面,不考慮厚度)需要的茅草面積至少為()A.24 B. C.64 D.4.設(shè)是定義在上的奇函數(shù),且當(dāng)時(shí),單調(diào)遞減,若,則的值()A.恒為負(fù)值 B.恒等于零C.恒為正值 D.無(wú)法確定正負(fù)5.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是()A.108cm3 B.100cm3 C.92cm3 D.84cm36.若函數(shù),設(shè),,,則,,的大小關(guān)系A(chǔ). B.C. D.7.正數(shù)a、b、c、d滿足,,則()A. B.C. D.a(chǎn)d與bc的大小關(guān)系不定8.設(shè),則()A.a(chǎn)<b〈c B.b<a<c C.c〈a〈b D.c<b〈a9.雙曲線經(jīng)過點(diǎn),且離心率為3,則它的虛軸長(zhǎng)是()A. B. C.2 D.410.函數(shù)在區(qū)間上的最大值為()A.2 B. C. D.11.給出定義:設(shè)是函數(shù)的導(dǎo)函數(shù),是函數(shù)的導(dǎo)函數(shù),若方程有實(shí)數(shù)解,則稱點(diǎn)為函數(shù)的“拐點(diǎn)”.已知函數(shù)的拐點(diǎn)是,則()A. B. C. D.112.復(fù)數(shù),則=()A.0 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項(xiàng)式的展開式中常數(shù)項(xiàng)為______用數(shù)字表示.14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為__.15.已知命題P:?x0>0,使得<2,則¬p是_____16.設(shè)為數(shù)列的前項(xiàng)和,,,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)張華同學(xué)上學(xué)途中必須經(jīng)過四個(gè)交通崗,其中在崗遇到紅燈的概率均為,在崗遇到紅燈的概率均為.假設(shè)他在4個(gè)交通崗遇到紅燈的事件是相互獨(dú)立的,X表示他遇到紅燈的次數(shù).(1)若,就會(huì)遲到,求張華不遲到的概率;(2)求EX.18.(12分)某商場(chǎng)舉行促銷活動(dòng),有兩個(gè)摸獎(jiǎng)箱,箱內(nèi)有一個(gè)“”號(hào)球,兩個(gè)“”號(hào)球,三個(gè)“”號(hào)球、四個(gè)無(wú)號(hào)球,箱內(nèi)有五個(gè)“”號(hào)球,五個(gè)“”號(hào)球,每次摸獎(jiǎng)后放回,每位顧客消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),消費(fèi)額滿元有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),摸得有數(shù)字的球則中獎(jiǎng),“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,“”號(hào)球獎(jiǎng)元,摸得無(wú)號(hào)球則沒有獎(jiǎng)金.(1)經(jīng)統(tǒng)計(jì),顧客消費(fèi)額服從正態(tài)分布,某天有位顧客,請(qǐng)估計(jì)消費(fèi)額(單位:元)在區(qū)間內(nèi)并中獎(jiǎng)的人數(shù).(結(jié)果四舍五入取整數(shù))附:若,則,.(2)某三位顧客各有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),求其中中獎(jiǎng)人數(shù)的分布列.(3)某顧客消費(fèi)額為元,有兩種摸獎(jiǎng)方法,方法一:三次箱內(nèi)摸獎(jiǎng)機(jī)會(huì);方法二:一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì).請(qǐng)問:這位顧客選哪一種方法所得獎(jiǎng)金的期望值較大.19.(12分)在一次數(shù)學(xué)測(cè)驗(yàn)后,班級(jí)學(xué)委對(duì)選答題的選題情況進(jìn)行統(tǒng)計(jì),如下表:幾何證明選講極坐標(biāo)與參數(shù)方程不等式選講合計(jì)男同學(xué)124622女同學(xué)081220合計(jì)12121842(1)在統(tǒng)計(jì)結(jié)果中,如果把幾何證明選講和極坐標(biāo)與參數(shù)方程稱為“幾何類”,把不等式選講稱為“代數(shù)類”,我們可以得到如下2×2列聯(lián)表.幾何類代數(shù)類合計(jì)男同學(xué)16622女同學(xué)81220合計(jì)241842能否認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān),若有關(guān),你有多大的把握?(2)在原始統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選答題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知這名學(xué)委和2名數(shù)學(xué)課代表都在選做“不等式選講”的同學(xué)中.①求在這名學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率;②記抽取到數(shù)學(xué)課代表的人數(shù)為,求的分布列及數(shù)學(xué)期望.下面臨界值表僅供參考:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)如圖所示,在直角坐標(biāo)系中,曲線C由以原點(diǎn)為圓心,半徑為2的半圓和中心在原點(diǎn),焦點(diǎn)在x軸上的半橢圓構(gòu)成,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.(1)寫出曲線C的極坐標(biāo)方程;(2)已知射線與曲線C交于點(diǎn)M,點(diǎn)N為曲線C上的動(dòng)點(diǎn),求面積的最大值.21.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,過且垂直于軸的焦點(diǎn)弦的弦長(zhǎng)為,過的直線交橢圓于,兩點(diǎn),且的周長(zhǎng)為.(1)求橢圓的方程;(2)已知直線,互相垂直,直線過且與橢圓交于點(diǎn),兩點(diǎn),直線過且與橢圓交于,兩點(diǎn).求的值.22.(10分)在平面直角坐標(biāo)系中,曲線:,曲線:(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.(1)求曲線,的極坐標(biāo)方程;(2)曲線:(為參數(shù),,),分別交,于,兩點(diǎn),當(dāng)取何值時(shí),取得最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】由題意得,事件“”,即,所以事件“”滿足條件是,由幾何概型的概率公式可得概率為,故選B.2、C【解題分析】
用微積分基本定理計(jì)算.【題目詳解】.故選:C.【題目點(diǎn)撥】本題考查微積分基本定理求定積分.解題時(shí)可求出原函數(shù),再計(jì)算.3、B【解題分析】茅草面積即為幾何體的側(cè)面積,由題意可知該幾何體的側(cè)面為兩個(gè)全等的等腰梯形和兩個(gè)全等的等腰三角形.其中,等腰梯形的上底長(zhǎng)為4,下底長(zhǎng)為8,高為;等腰三角形的底邊長(zhǎng)為4,高為.故側(cè)面積為.即需要的茅草面積至少為.選B.4、A【解題分析】
依據(jù)奇函數(shù)的性質(zhì),在上單調(diào)遞減,可以判斷出在上單調(diào)遞減,進(jìn)而根據(jù)單調(diào)性的定義和奇偶性的定義,即可判斷的符號(hào)。【題目詳解】因?yàn)闀r(shí),單調(diào)遞減,而且是定義在上的奇函數(shù),所以,在上單調(diào)遞減,當(dāng)時(shí),,由減函數(shù)的定義可得,,即有,故選A?!绢}目點(diǎn)撥】本題主要考查函數(shù)的奇偶性和單調(diào)性應(yīng)用。5、B【解題分析】試題分析:由三視圖可知:該幾何體是一個(gè)棱長(zhǎng)分別為6,6,3,砍去一個(gè)三條側(cè)棱長(zhǎng)分別為4,4,3的一個(gè)三棱錐(長(zhǎng)方體的一個(gè)角).據(jù)此即可得出體積.解:由三視圖可知:該幾何體是一個(gè)棱長(zhǎng)分別為6,6,3,砍去一個(gè)三條側(cè)棱長(zhǎng)分別為4,4,3的一個(gè)三棱錐(長(zhǎng)方體的一個(gè)角).∴該幾何體的體積V=6×6×3﹣=1.故選B.考點(diǎn):由三視圖求面積、體積.6、D【解題分析】
根據(jù)題意,結(jié)合二次函數(shù)的性質(zhì)可得在上為增函數(shù),結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì)可得,進(jìn)而可得,結(jié)合函數(shù)的單調(diào)性分析可得答案.【題目詳解】根據(jù)題意,函數(shù),是二次函數(shù),其對(duì)稱軸為y軸,且在上為增函數(shù),,,,則有,則;故選:D.【題目點(diǎn)撥】本題考查函數(shù)的奇偶性以及單調(diào)性的判定以及應(yīng)用,涉及對(duì)數(shù)的運(yùn)算,屬于基礎(chǔ)題.7、C【解題分析】因?yàn)閍,b,c,d均為正數(shù),又由a+d=b+c得a2+2ad+d2=b2+2bc+c2所以(a2+d2)﹣(b2+c2)=2bc﹣2ad.①又因?yàn)閨a﹣d|<|b﹣c可得a2﹣2ad+d2<b2﹣2bc+c2,②將①代入②得2bc﹣2ad<﹣2bc+2ad,即4bc<4ad,所以ad>bc故選C.8、D【解題分析】分析:先對(duì)a,b,c,進(jìn)行化簡(jiǎn),然后進(jìn)行比較即可.詳解:,又故,故選D.點(diǎn)睛:考查對(duì)指數(shù)冪的化簡(jiǎn)運(yùn)算,定積分計(jì)算,比較大小則通常進(jìn)行估算值的大小,屬于中檔題.9、A【解題分析】
根據(jù)雙曲線經(jīng)過的點(diǎn)和離心率,結(jié)合列方程組,解方程組求得的值,進(jìn)而求得虛軸長(zhǎng).【題目詳解】將點(diǎn)代入雙曲線方程及離心率為得,解得,故虛軸長(zhǎng),故本小題選A.【題目點(diǎn)撥】本小題主要考查雙曲線的離心率,考查雙曲線的幾何性質(zhì),考查方程的思想,屬于基礎(chǔ)題.解題過程中要注意:虛軸長(zhǎng)是而不是.10、D【解題分析】
求出導(dǎo)函數(shù),利用導(dǎo)數(shù)確定函數(shù)的單調(diào)性,從而可確定最大值.【題目詳解】,當(dāng)時(shí),;時(shí),,∴已知函數(shù)在上是增函數(shù),在上是減函數(shù),.故選D.【題目點(diǎn)撥】本題考查用導(dǎo)數(shù)求函數(shù)的最值.解題時(shí)先求出函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的正負(fù)確定函數(shù)的增減,從而確定最值,在閉區(qū)間的最值有時(shí)可能在區(qū)間的端點(diǎn)處取得,要注意比較.11、D【解題分析】
遇到新定義問題,分析新定義的特點(diǎn),弄清新定義的性質(zhì),按新定義的要求,在該題中求出原函數(shù)的導(dǎo)函數(shù),再求出導(dǎo)函數(shù)的導(dǎo)函數(shù),由導(dǎo)函數(shù)的導(dǎo)函數(shù)等于0,即可得到拐點(diǎn),問題得以解決.【題目詳解】解:函數(shù),,,因?yàn)榉匠逃袑?shí)數(shù)解,則稱點(diǎn),為函數(shù)的“拐點(diǎn)”,已知函數(shù)的“拐點(diǎn)”是,所以,即,故選:.【題目點(diǎn)撥】本題考查導(dǎo)數(shù)的運(yùn)算.導(dǎo)數(shù)的定義,和拐點(diǎn),根據(jù)新定義題,考查了函數(shù)導(dǎo)函數(shù)零點(diǎn)的求法;解答的關(guān)鍵是函數(shù)值滿足的規(guī)律,屬于基礎(chǔ)題12、C【解題分析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,先化簡(jiǎn)復(fù)數(shù),再由復(fù)數(shù)模的計(jì)算公式,即可求出結(jié)果.【題目詳解】因?yàn)?,所?故選C【題目點(diǎn)撥】本題主要考查復(fù)數(shù)的除法,以及復(fù)數(shù)的模,熟記公式即可,屬于基礎(chǔ)題型.二、填空題:本題共4小題,每小題5分,共20分。13、-160【解題分析】二項(xiàng)式的展開式的通項(xiàng)為,.令,可得,即展開式中常數(shù)項(xiàng)為.答案:14、【解題分析】
由三視圖可分析,幾何體應(yīng)是相同的兩個(gè)三棱錐,并排放置,并且三棱錐的某個(gè)頂點(diǎn)的三條棱兩兩垂直,根據(jù)圖中數(shù)據(jù)直接計(jì)算體積.【題目詳解】由三視圖可分析,幾何體應(yīng)是相同的兩個(gè)三棱錐,并排放置,并且三棱錐的某個(gè)頂點(diǎn)的三條棱兩兩垂直,.故填:.【題目點(diǎn)撥】本題考查了根據(jù)三視圖計(jì)算幾何體的體積,屬于簡(jiǎn)單題型.15、【解題分析】
根據(jù)含有量詞的命題的否定即可得到結(jié)論.【題目詳解】命題為特稱命題,由特稱命題的定義,命題的否定就是對(duì)這個(gè)命題的結(jié)論進(jìn)行否認(rèn).全稱特稱命題即改變量詞,再否定結(jié)論可得:命題的否定為:?x>0,x2,故答案為:?x>0,x2.【題目點(diǎn)撥】本題主要考查含有量詞的命題的否定,全(特)稱命題的否定命題的格式和方法,要注意兩點(diǎn):1)全稱命題變?yōu)樘胤Q命題;2)只對(duì)結(jié)論進(jìn)行否定.屬于基礎(chǔ)題.16、4【解題分析】
由已知條件可判斷出數(shù)列為等比數(shù)列,再由可求出首項(xiàng),再令即可求出的值.【題目詳解】,且,,即,則數(shù)列為等比數(shù)列且公比為,,,在中令得:故答案為:4【題目點(diǎn)撥】本題考查了已知的關(guān)系求數(shù)列通項(xiàng),以及等比數(shù)列前項(xiàng)和公式,考查了學(xué)生的計(jì)算能力,屬于一般題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】
(1);.故張華不遲到的概率為.(2)的分布列為
0
1
2
3
4
.18、(1)中獎(jiǎng)的人數(shù)約為人.(2)分布列見解析.(3)這位顧客選方法二所得獎(jiǎng)金的期望值較大.【解題分析】分析:(1)依題意得,,得,消費(fèi)額在區(qū)間內(nèi)的顧客有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),中獎(jiǎng)率為,人數(shù)約,可得其中中獎(jiǎng)的人數(shù);(2)三位顧客每人一次箱內(nèi)摸獎(jiǎng)中獎(jiǎng)率都為,三人中中獎(jiǎng)人數(shù)服從二項(xiàng)分布,,,從而可得分布列;(3)利用數(shù)學(xué)期望的計(jì)算公式算出兩種方法所得獎(jiǎng)金的期望值即可得出結(jié)論.詳解:(1)依題意得,,得,消費(fèi)額在區(qū)間內(nèi)的顧客有一次箱內(nèi)摸獎(jiǎng)機(jī)會(huì),中獎(jiǎng)率為人數(shù)約人其中中獎(jiǎng)的人數(shù)約為人(2)三位顧客每人一次箱內(nèi)摸獎(jiǎng)中獎(jiǎng)率都為,三人中中獎(jiǎng)人數(shù)服從二項(xiàng)分布,,故的分布列為(或)(或)(或)(或)(3)箱摸一次所得獎(jiǎng)金的期望為箱摸一次所得獎(jiǎng)金的期望為方法一所得獎(jiǎng)金的期望值為,方法二所得獎(jiǎng)金的期望值為,所以這位顧客選方法二所得獎(jiǎng)金的期望值較大點(diǎn)睛:求解離散型隨機(jī)變量的數(shù)學(xué)期望的一般步驟:①“判斷取值”,即判斷隨機(jī)變量的所有可能取值以及取每個(gè)值所表示的意義;②“探求概率”,即利用排列組合、枚舉法、概率公式(常見的有古典概型公式、幾何概型公式、互斥事件的概率加法公式、獨(dú)立事件的概率公式以及對(duì)立事件的概率公式等),求出隨機(jī)變量取每個(gè)值時(shí)的概率;③“寫分布列”,即按規(guī)范形式寫出分布列,并注意用分布列的性質(zhì)檢驗(yàn)所求的分布列或某事件的概率是否正確;④“求期望”,一般利用離散型隨機(jī)變量的數(shù)學(xué)期望的定義求期望.對(duì)于某些實(shí)際問題中的隨機(jī)變量,如果能夠斷定它服從某常見的典型分布(如二項(xiàng)分布),則此隨機(jī)變量的期望可直接利用這種典型分布的期望公式()求得.因此,應(yīng)熟記常見的典型分布的期望公式,可加快解題速度.19、(1)答案見解析;(2)①.;②.答案見解析.【解題分析】分析:(1)由題意知K2的觀測(cè)值k≈4.582>3.841,則有95%的把握認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān).(2)①由題意結(jié)合條件概率計(jì)算公式可知在學(xué)委被選中的條件下,2名數(shù)學(xué)課代表也被選中的概率為;②由題意知X的可能取值為0,1,2.由超幾何分布計(jì)算相應(yīng)的概率值可得其分布列,然后計(jì)算其數(shù)學(xué)期望為E(X)=.詳解:(1)由題意知K2的觀測(cè)值k=≈4.582>3.841,所以有95%的把握認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān).(2)①由題可知在選做“不等式選講”的18名學(xué)生中,要選取3名同學(xué),令事件A為“這名學(xué)委被選中”,事件B為“兩名數(shù)學(xué)課代表被選中”,則,,②由題意知X的可能取值為0,1,2.依題意P(X=0)=,P(X=1)==,P(X=2)=,則其分布列為:所以E(X)=0×+1×+2×=.點(diǎn)睛:本題主要考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望,獨(dú)立性檢驗(yàn)的數(shù)學(xué)思想等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1);(2).【解題分析】
(1)根據(jù)題意,分別求出曲線上半部分和下半部分直角坐標(biāo)方程,利用直角坐標(biāo)系與極坐標(biāo)的轉(zhuǎn)化公式,即可得到曲線的極坐標(biāo)方程;(2)由題可知要使面積最大,則點(diǎn)在半圓上,且,利用極坐標(biāo)方程求出,由三角形面積公式即可得到答案?!绢}目詳解】(1)由題設(shè)可得,曲線上半部分的直角坐標(biāo)方程為,所以曲線上半部分的極坐標(biāo)方程為.又因?yàn)榍€下半部分的標(biāo)準(zhǔn)方程為,所以曲線下半部分極坐標(biāo)方程為,故曲線的極坐標(biāo)方程為.(2)由題設(shè),將代入曲線的極坐標(biāo)方程可得:.又點(diǎn)是曲線上的動(dòng)點(diǎn),所以.由面積公式得:當(dāng)且僅當(dāng),時(shí)等號(hào)成立,故面積的最大值為.【題目點(diǎn)撥】本題考查直角坐標(biāo)與極坐標(biāo)的互化,利用極坐標(biāo)的幾何意義求三角形面積,考查學(xué)生基本的計(jì)算能力,屬于中檔題21、(1)(2)【解題分析】分析:(1)根據(jù)周長(zhǎng)確定,由通徑確定,求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度鮮活農(nóng)產(chǎn)品運(yùn)輸合同協(xié)議及保鮮技術(shù)要求3篇
- 2024版有關(guān)服務(wù)的合同匯編
- 2025年度廠房建設(shè)項(xiàng)目工程監(jiān)理合同范本4篇
- 2025年度茶葉產(chǎn)品追溯系統(tǒng)建設(shè)合同4篇
- 專用飲用水品質(zhì)保障合同范本2024版B版
- 2025年度常年法律顧問專項(xiàng)服務(wù)合同7篇
- 2025年度體育健身中心場(chǎng)地租賃及會(huì)員服務(wù)合同4篇
- 2025年度文化藝術(shù)品展覽與交易合作合同4篇
- 2024年04月廣東廣州銀行總行人才招考筆試歷年參考題庫(kù)附帶答案詳解
- 專利及版權(quán)共有協(xié)議樣例(2024版)版
- 《流感科普宣教》課件
- 離職分析報(bào)告
- 春節(jié)家庭用電安全提示
- 醫(yī)療糾紛預(yù)防和處理?xiàng)l例通用課件
- 廚邦醬油推廣方案
- 乳腺癌診療指南(2024年版)
- 高三數(shù)學(xué)寒假作業(yè)1
- 保險(xiǎn)產(chǎn)品創(chuàng)新與市場(chǎng)定位培訓(xùn)課件
- (完整文本版)體檢報(bào)告單模版
- 1例左舌鱗癌手術(shù)患者的圍手術(shù)期護(hù)理體會(huì)
- 鋼結(jié)構(gòu)牛腿計(jì)算
評(píng)論
0/150
提交評(píng)論