江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

江蘇省泰興市三中2024屆數(shù)學高二第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知x>0,y>0,x+2y+2xy=8,則x+2y的最小值是A.3 B.4 C. D.2.在等差數(shù)列中,,則()A.45 B.75 C.180 D.3603.已知關(guān)于的方程,,若對任意的,該方程總存在唯一的實數(shù)解,則實數(shù)的取值范圍是()A. B. C. D.4.已知是周期為4的偶函數(shù),當時,則()A.0 B.1 C.2 D.35.若能被整除,則的值可能為()A. B. C.x="5,n=4" D.6.已知與之間的一組數(shù)據(jù):01231357則與的線性回歸方程必過A. B. C. D.7.同學聚會上,某同學從《愛你一萬年》,《十年》,《父親》,《單身情歌》四首歌中選出兩首歌進行表演,則《愛你一萬年》未選取的概率為()A.B.C.D.8.在等差數(shù)列中,且,則的最大值等于()A.3 B.4 C.6 D.99.魏晉時期數(shù)學家劉徽在他的著作九章算術(shù)注中,稱一個正方體內(nèi)兩個互相垂直的內(nèi)切圓柱所圍成的幾何體為“牟合方蓋”,劉徽通過計算得知正方體的內(nèi)切球的體積與“牟合方蓋”的體積之比應(yīng)為:若正方體的棱長為2,則“牟合方蓋”的體積為A.16 B. C. D.10.某小區(qū)有1000戶居民,各戶每月的用電量近似服從正態(tài)分布,則用電量在320度以上的居民戶數(shù)估計約為()(參考數(shù)據(jù):若隨機變量服從正態(tài)分布,則,,.)A.17 B.23 C.34 D.4611.已知定義域為的奇函數(shù),當時,滿足,則()A. B. C. D.12.設(shè)函數(shù),若實數(shù)分別是的零點,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在回歸分析中,分析殘差能夠幫助我們解決的問題是:_____________________.(寫出一條即可)14.公元前3世紀,古希臘數(shù)學家阿波羅尼斯在前人的基礎(chǔ)上寫了一部劃時代的著作《圓錐曲線論》,該書給出了當時數(shù)學家們所研究的六大軌跡問題,其中之一便是“到兩個定點的距離之比等于不為1的常數(shù)的軌跡是圓”,簡稱“阿氏圓”.用解析幾何方法解決“到兩個定點,的距離之比為的動點軌跡方程是:”,則該“阿氏圓”的圓心坐標是______,半徑是_____.15.已知的展開式中項的系數(shù)是-35,則________.16.已知是橢圓的左、右焦點,過左焦點的直線與橢圓交于兩點,且,,則橢圓的離心率為________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)從5名男生和4名女生中選出4人去參加座談會,問:(1)如果4人中男生和女生各選2人,有多少種選法?(2)如果男生中的甲與女生中的乙至少要有1人在內(nèi),有多少種選法?(3)如果4人中必須既有男生又有女生,有多少種選法?18.(12分)選修4-5:不等式選講已知函數(shù)的最大值為.(1)求的值;(2)若,,求的最大值.19.(12分)已知函數(shù)為常數(shù),且)有極大值,求的值.20.(12分)如圖,直三棱柱中,,,,為的中點,點為線段上的一點.(1)若,求證:;(2)若,異面直線與所成的角為,求直線與平面所成角的正弦值.21.(12分)如圖,在正四棱錐中,為底面的中心,已知,點為棱上一點,以為基底,建立如圖所示的空間直角坐標系.(1)若為的中點,求直線與平面所成角的正弦值;(2)設(shè)二面角的平面角為,且,試判斷點的位置.22.(10分)設(shè)命題函數(shù)在是減函數(shù);命題,都有成立.(1)若命題為真命題,求實數(shù)的取值范圍;(2)若為真命題,為假命題,求實數(shù)的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

解析:考察均值不等式,整理得即,又,2、C【解題分析】

由,利用等差數(shù)列的性質(zhì)求出,再利用等差數(shù)列的性質(zhì)可得結(jié)果.【題目詳解】由,得到,則.故選C.【題目點撥】本題主要考查等差數(shù)列性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.解與等差數(shù)列有關(guān)的問題時,要注意應(yīng)用等差數(shù)列的性質(zhì):若,則.3、B【解題分析】由成立,得,設(shè),,則則時,,函數(shù)單調(diào)遞減;時,,函數(shù)單調(diào)遞增;且,使得對于任意,對任意的,方程存在唯一的解,則,即,即,所以,所以實數(shù)得取值范圍是,故選B.點睛:本題主要考查了導(dǎo)數(shù)在函數(shù)中的綜合應(yīng)用問題,其中解得中涉及到利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)研究函數(shù)的最值和函數(shù)與方程等知識點的綜合應(yīng)用,試題有一定的難度,屬于難題,解答中把方程存在唯一的解轉(zhuǎn)化為函數(shù)的最值問題是解答的關(guān)鍵.4、D【解題分析】

利用函數(shù)的周期性,化簡所求函數(shù)值的自變量為已知函數(shù)的定義域中,代入求解即可.【題目詳解】f(x)是周期為4的偶函數(shù),當x∈[0,2]時f(x)=,則f(2014)+f(2015)=f(2012+2)+f(2016﹣1)=f(2)+f(﹣1)=log22+1+12=1.故選:D.【題目點撥】本題考查分段函數(shù)的應(yīng)用,函數(shù)的周期性以及函數(shù)值的求法,考查計算能力.5、C【解題分析】

所以當時,能被整除,選C.6、B【解題分析】

先求出x的平均值,y的平均值,回歸直線方程一定過樣本的中心點(,),代入可得答案.【題目詳解】解:回歸直線方程一定過樣本的中心點(,),,∴樣本中心點是(1.5,4),則y與x的線性回歸方程y=bx+a必過點(1.5,4),故選B.【題目點撥】本題考查平均值的計算方法,回歸直線的性質(zhì):回歸直線方程一定過樣本的中心點(,).7、B【解題分析】,所以選B.8、B【解題分析】

先由等差數(shù)列的求和公式,得到,再由基本不等式,即可求出結(jié)果.【題目詳解】因為在等差數(shù)列中,所以,即,又,所以,當且僅當時,的最大值為4.故選B?!绢}目點撥】本題主要考查基本不等式求積的最大值,熟記等差數(shù)列的求和公式以及基本不等式即可,屬于??碱}型.9、C【解題分析】

由已知求出正方體內(nèi)切球的體積,再由已知體積比求得“牟合方蓋”的體積.【題目詳解】正方體的棱長為2,則其內(nèi)切球的半徑,正方體的內(nèi)切球的體積,又由已知,.故選C.【題目點撥】本題考查球的體積的求法,理解題意是關(guān)鍵,是基礎(chǔ)題.10、B【解題分析】分析:先求用電量在320度以上的概率,再求用電量在320度以上的居民戶數(shù).詳解:由題得所以,所以,所以求用電量在320度以上的居民戶數(shù)為1000×0.023=23.故答案為B.點睛:(1)本題主要考查正態(tài)分布曲線的性質(zhì),意在考查學生對這些知識的掌握水平和數(shù)形結(jié)合的思想方法.(2)對于正態(tài)分布曲線的概率的計算,不要死記硬背,要結(jié)合其圖像分析求解.11、D【解題分析】分析:通過計算前幾項,可得n=3,4,…,2018,數(shù)列以3為周期的數(shù)列,計算可得所求和.詳解:定義域為R的奇函數(shù)f(x),可得f(﹣x)=﹣f(x),當x>0時,滿足,可得x>時,f(x)=f(x﹣3),則f(1)=﹣log25,f(2)=f(﹣1)=﹣f(1)=log25,f(3)=f(0)=0,f(4)=f(1)=﹣log25,f(5)=f(2)=f(﹣1)=﹣f(1)=log25,f(6)=f(3)=f(0)=0,f(7)=f(4)=f(1)=﹣log25,f(8)=f(2)=f(﹣1)=﹣f(1)=log25,…f(1)+f(2)+f(3)+…+f(2020)=﹣log25+log25+(0﹣log25+log25)×672=0,故選:D.點睛:歸納推理的一般步驟:一、通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì).二、從已知的相同性質(zhì)中推出一個明確表述的一般性命題(猜想).常見的歸納推理分為數(shù)的歸納和形的歸納兩類:(1)數(shù)的歸納包括數(shù)的歸納和式子的歸納,解決此類問題時,需要細心觀察,尋求相鄰項及項與序號之間的關(guān)系,同時還要聯(lián)系相關(guān)的知識,如等差數(shù)列、等比數(shù)列等;(2)形的歸納主要包括圖形數(shù)目的歸納和圖形變化規(guī)律的歸納.12、A【解題分析】由題意得,函數(shù)在各自的定義域上分別為增函數(shù),∵,又實數(shù)分別是的零點∴,∴,故.選A.點睛:解答本題時,先根據(jù)所給的函數(shù)的解析式判斷單調(diào)性,然后利用判斷零點所在的范圍,然后根據(jù)函數(shù)的單調(diào)性求得的取值范圍,其中借助0將與聯(lián)系在一起是關(guān)鍵.二、填空題:本題共4小題,每小題5分,共20分。13、尋找異常點,考查相應(yīng)的樣本數(shù)據(jù)是否有錯【解題分析】

分析殘差是回歸診斷的一部分,可以幫助我們發(fā)現(xiàn)樣本數(shù)據(jù)中的錯誤,分析模型選擇是否合適.【題目詳解】分析殘差能夠幫助我們解決的問題是:尋找異常點,考查相應(yīng)的樣本數(shù)據(jù)是否有錯;故答案為:尋找異常點,考查相應(yīng)的樣本數(shù)據(jù)是否有錯.【題目點撥】本題考查線性回歸方程中殘差的作用,是基礎(chǔ)題.14、2【解題分析】

將圓化為標準方程即可求得結(jié)果.【題目詳解】由得:圓心坐標為:,半徑為:本題正確結(jié)果:;【題目點撥】本題考查根據(jù)圓的方程求解圓心和半徑的問題,屬于基礎(chǔ)題.15、1【解題分析】

試題分析:∵,∴.又展開式中的系數(shù)是-35,可得,∴m=1.∴.在①,令x=1,m=1時,由①可得,即考點:二項式系數(shù)的性質(zhì)16、【解題分析】

連接,設(shè),利用橢圓性質(zhì),得到長度,分別在△和中利用余弦定理,得到c的長度,根據(jù)離心率的定義計算得到答案.【題目詳解】設(shè),則,,由,得,,在△中,,又在中,,得故離心率【題目點撥】本題考察了離心率的計算,涉及到橢圓的性質(zhì),正余弦定理,綜合性強,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)30;(2)91種;(3)120種.【解題分析】

試題分析:(1)根據(jù)題意,分別計算“從5名男生中選出2人”和“從4名女生中選出2人”的選法數(shù)目,由分步計數(shù)原理計算可得答案;

(2)用間接法分析:先計算在9人中任選4人的選法數(shù)目,再排除其中“甲乙都沒有入選”的選法數(shù)目,即可得答案;

(3)用間接法分析:先計算在9人中任選4人的選法數(shù)目,再排除其中“只有男生”和“只有女生”的選法數(shù)目,即可得答案.試題解析:(1);(2)方法1:(間接法)在9人選4人的選法中,把男甲和女乙都不在內(nèi)的去掉,就得到符合條件的選法數(shù)為:(種);方法2:(直接法)甲在內(nèi)乙不在內(nèi)有種,乙在內(nèi)甲不在內(nèi)有種,甲、乙都在內(nèi)有種,所以男生中的甲與女生中的乙至少有1人在內(nèi)的選法共有:(種).(3)方法1:(間接法)在9人選4人的選法中,把只有男生和只有女生的情況排除掉,得到選法總數(shù)為:(種);方法2:(直接法)分別按含男1,2,3人分類,得到符合條件的選法總數(shù)為:(種).點睛:(1)解排列組合問題要遵循兩個原則:①按元素(或位置)的性質(zhì)進行分類;②按事情發(fā)生的過程進行分步.具體地說,解排列組合問題常以元素(或位置)為主體,即先滿足特殊元素(或位置),再考慮其他元素(或位置).(2)不同元素的分配問題,往往是先分組再分配.在分組時,通常有三種類型:①不均勻分組;②均勻分組;③部分均勻分組.注意各種分組類型中,不同分組方法的求解.18、(1)2(2)2【解題分析】

試題分析:(1)根據(jù)絕對值定義,將函數(shù)化為分段函數(shù)形式,分別求各段最大值,最后取各段最大值的最大者為的值;(2)利用基本不等式得,即得的最大值.試題解析:(1)由于當時,,當時,,當時,所以.(2)由已知,有,因為(當時取等號),(當時取等號),所以,即,故的最大值為2.19、【解題分析】

求導(dǎo),解出導(dǎo)數(shù)方程的兩根,討論導(dǎo)數(shù)在這兩個點左右兩邊導(dǎo)數(shù)的符號,確定極大值點,再將極大值點代入函數(shù)解析式,可求出實數(shù)的值.【題目詳解】,則,令,得,,,,列表如下:極大值極小值所以,函數(shù)在處取得極大值,即,解得.【題目點撥】本題考查利用導(dǎo)數(shù)求函數(shù)的極值,基本步驟如下:(1)求函數(shù)的定義域;(2)求導(dǎo);(3)求極值點并判斷導(dǎo)數(shù)在極值點附近的符號,確定極值點的屬性;(4)將極值點代入函數(shù)解析式可求出極值.20、(1)證明見解析;(2)【解題分析】

(1)根據(jù)三棱柱是直三棱柱的特征,又,可作中點,連接DM,通過線面垂直證明平面,可推出,又,可證(2)通過作圖,分別以,,為軸、軸、軸,建立空間直角體系,先通過幾何法求出長度,分別表示出線面角各點對應(yīng)的坐標,再用向量公式算出直線與平面所成角的正弦值【題目詳解】證明:(1)取中點,連接,,有,因為,所以,又因為三棱柱為直三棱柱,所以平面平面,又因為平面平面,所以平面,又因為平面,所以又因為,,平面,平面,所以平面,又因為平面,所以,因為,所以.(2)設(shè),如圖以為坐標原點,分別以,,為軸、軸、軸,建立空間直角體系,由(1)可知,,所以,故,,,,,對平面,,,所以其法向量可表示為.又,所以直線與平面成角的正弦值.【題目點撥】證線線垂直一般是通過線面垂直進行證明,本題其實還可以采用射影逆定理進行證明,通過證明與斜線垂直即,推出與射影垂直,,不妨一試;對于像本題中第二問不太好確定線面關(guān)系而又發(fā)覺立體圖形比較規(guī)整的,比如說正方體、長方體、正三棱錐,直棱柱等,都可直接考慮建立空間直角坐標系來進行求解21、(1);(2)點位于棱的三等分點處.【解題分析】

先由題意,得到,,,的坐標,以及向量,的坐標;(1)根據(jù)題中條件,得到,求出平面的一個法向量

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論