2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題含解析_第1頁
2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題含解析_第2頁
2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題含解析_第3頁
2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題含解析_第4頁
2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省岳陽縣一中、汨羅市一中數(shù)學(xué)高二第二學(xué)期期末檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數(shù)是函數(shù)的導(dǎo)函數(shù),,對任意實數(shù)都有,則不等式的解集為()A. B. C. D.2.圖1和圖2中所有的正方形都全等,將圖1中的正方形放在圖2中的①②③④某一位置,所組成的圖形能圍成正方體的概率是()A.14 B.C.34 D.3.已知隨機(jī)變量,且,則A. B. C. D.4.曲線在點處的切線的傾斜角為()A.30° B.60° C.45° D.120°5.已知圓,定點,點為圓上的動點,點在上,點在線段上,且滿足,,則點的軌跡方程是()A. B.C. D.6.若,且,則“”是“方程表示焦點在y軸上的橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知數(shù)列,如果,,,……,,……,是首項為1,公比為的等比數(shù)列,則=A. B. C. D.8.若函數(shù)在其定義域內(nèi)的一個子區(qū)間上不是單調(diào)函數(shù),則實數(shù)的取值范圍是()A. B. C. D.9.執(zhí)行如圖所示的程序框圖,如果輸入的,則輸出的()A.5 B.6 C.7 D.810.已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=2x-3A.-1 B.1 C.-2 D.211.若正整數(shù)除以正整數(shù)后的余數(shù)為,則記為,例如.如圖程序框圖的算法源于我國古代聞名中外的《中國剩余定理》.執(zhí)行該程序框圖,則輸出的等于()A.4 B.8 C.16 D.3212.下列命題中正確的個數(shù)()①“?x>0,2x>sinx”的否定是“?x0≤0,2x0≤sinx0”;②用相關(guān)指數(shù)R2可以刻畫回歸的擬合效果,A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.記曲線與直線,所圍成封閉圖形的面積為,則________.14.事件相互獨立,若,,則____.15.某人有4種顏色的燈泡(每種顏色的燈泡足夠多),要在如圖所示的6個點A、B、C、A1、、B1、C1上各裝一個燈泡,要求同一條線段兩端的燈泡不同色,則每種顏色的燈泡都至少用一個的安裝方法共有種(用數(shù)字作答).16.己知冪函數(shù)在上單調(diào)遞減,則______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在中國北京世界園藝博覽會期間,某工廠生產(chǎn)、、三種紀(jì)念品,每一種紀(jì)念品均有精品型和普通型兩種,某一天產(chǎn)量如下表:(單位:個)紀(jì)念品紀(jì)念品紀(jì)念品精品型普通型現(xiàn)采用分層抽樣的方法在這一天生產(chǎn)的紀(jì)念品中抽取個,其中種紀(jì)念品有個.(1)求的值;(2)從種精品型紀(jì)念品中抽取個,其某種指標(biāo)的數(shù)據(jù)分別如下:、、、、,把這個數(shù)據(jù)看作一個總體,其均值為,方差為,求的值;(3)用分層抽樣的方法在種紀(jì)念品中抽取一個容量為的樣木,從樣本中任取個紀(jì)念品,求至少有個精品型紀(jì)念品的概率.18.(12分)已知函數(shù),其中為常數(shù).(1)若,求函數(shù)的極值;(2)若函數(shù)在上單調(diào)遞增,求實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面是等腰直角三角形,且,側(cè)面⊥底面.(1)若分別為棱的中點,求證:∥平面;(2)棱上是否存在一點,使二面角成角,若存在,求出的長;若不存在,請說明理由.20.(12分)袋中裝有黑色球和白色球共個,從中任取個球都是白色球的概率為,現(xiàn)有甲、乙兩人從袋中輪流摸出個球,甲先摸,乙后摸,然后甲再摸,,摸后均不放回,直到有一個人摸到白色球后終止,每個球在每一次被摸出的機(jī)會都是等可能的,用表示摸球終止時所需摸球的次數(shù).(1)求隨機(jī)變量的分布和均值;(2)求甲摸到白色球的概率.21.(12分)2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計“青少年”與“中老年”的人數(shù)之比為.關(guān)注不關(guān)注合計青少年15中老年合計5050100(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有99%的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問卷調(diào)查.在這9人中再選取3人進(jìn)行面對面詢問,記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.附:參考公式,其中.臨界值表:0.050.0100.0013.8416.63510.82822.(10分)某技術(shù)人員在某基地培育了一種植物,一年后,該技術(shù)人員從中隨機(jī)抽取了部分這種植物的高度(單位:厘米)作為樣本(樣本容量為)進(jìn)行統(tǒng)計,繪制了如下頻率分布直方圖,已知抽取的樣本植物高度在內(nèi)的植物有8株,在內(nèi)的植物有2株.(Ⅰ)求樣本容量和頻率分布直方圖中的,的值;(Ⅱ)在選取的樣本中,從高度在內(nèi)的植物中隨機(jī)抽取3株,設(shè)隨機(jī)變量表示所抽取的3株高度在內(nèi)的株數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望;(Ⅲ)據(jù)市場調(diào)研,高度在內(nèi)的該植物最受市場追捧.老王準(zhǔn)備前往該基地隨機(jī)購買該植物50株.現(xiàn)有兩種購買方案,方案一:按照該植物的不同高度來付費,其中高度在內(nèi)的每株10元,其余高度每株5元;方案二:按照該植物的株數(shù)來付費,每株6元.請你根據(jù)該基地該植物樣本的統(tǒng)計分析結(jié)果為決策依據(jù),預(yù)測老王采取哪種付費方式更便宜?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】令,,所以函數(shù)是減函數(shù),又,所以不等式的解集為本題選擇B選項.2、C【解題分析】分析:將圖1的正方形放在圖2中①的位置出現(xiàn)重疊的面,不能圍成正方體,再根據(jù)概率公式求解可得.詳解:由圖共有4種等可能結(jié)果,其中將圖1的正方形放在圖2中①的位置出現(xiàn)重疊的面,不能圍成正方體,則所組成的圖形能圍成正方體的概率是34故選:C.點睛:本題考查了概率公式和展開圖折疊成幾何體,解題時勿忘記四棱柱的特征及正方體展開圖的各種情形,注意:只要有“田”字格的展開圖都不是正方體的表面展開圖.3、B【解題分析】

根據(jù)正態(tài)分布的對稱性即可得到答案.【題目詳解】由于,故選B.【題目點撥】本題主要考查正態(tài)分布中概率的計算,難度不大.4、C【解題分析】

求導(dǎo)得:在點處的切線斜率即為導(dǎo)數(shù)值1.所以傾斜角為45°.故選C.5、A【解題分析】試題分析:由,可知,直線為線段的中垂線,所以有,所以有,所以點的軌跡是以點為焦點的橢圓,且,即,所以橢圓方程為,故選A.考點:1.向量運算的幾何意義;2.橢圓的定義與標(biāo)準(zhǔn)方程.【名師點睛】本題主要考查向量運算的幾何意義、橢圓的定義與橢圓方程的求法,屬中檔題.求橢圓標(biāo)準(zhǔn)方程常用方法有:1.定義法,即根據(jù)題意得到所求點的軌跡是橢圓,并求出的值;2.選定系數(shù)法:根據(jù)題意先判斷焦點在哪個坐標(biāo)軸上,設(shè)出其標(biāo)準(zhǔn)方程,根據(jù)已知條件建立關(guān)系的方程組,解之即可.6、B【解題分析】

由指數(shù)函數(shù)的單調(diào)性可得;由橢圓方程可得,再由充分必要條件的定義,即可得到所求結(jié)論.【題目詳解】解:若,則,若方程表示焦點在y軸上的橢圓,則,即“”是“方程表示焦點在y軸上的橢圓”的必要不充分條件.故選:【題目點撥】本題考查指數(shù)函數(shù)的單調(diào)性以及橢圓方程,考查充分必要條件的定義,考查推理能力,屬于基礎(chǔ)題.7、A【解題分析】分析:累加法求解。詳解:,,解得點睛:形如的模型,求通項公式,用累加法。8、B【解題分析】分析:求出導(dǎo)函數(shù),求得極值點,函數(shù)在含有極值點的區(qū)間內(nèi)不單調(diào).詳解:,此函數(shù)在上是增函數(shù),又,因此是的極值點,它在含有的區(qū)間內(nèi)不單調(diào),此區(qū)間為B.故選B.點睛:本題考查用導(dǎo)數(shù)研究函數(shù)的極值,函數(shù)在不含極值點的區(qū)間內(nèi)一定是單調(diào)函數(shù),因此此只要求出極值點,含有極值點的區(qū)間就是正確的選項.9、A【解題分析】,故輸出.10、A【解題分析】

先求出f2,再利用奇函數(shù)的性質(zhì)得f【題目詳解】由題意可得,f2=22-3=1因此,f-2=-f【題目點撥】本題考查利用函數(shù)的奇偶性求值,解題時要注意結(jié)合自變量選擇解析式求解,另外就是靈活利用奇偶性,考查計算能力,屬于基礎(chǔ)題。11、C【解題分析】初如值n=11,i=1,i=2,n=13,不滿足模3余2.i=4,n=17,滿足模3余2,不滿足模5余1.i=8,n=25,不滿足模3余2,i=16,n=41,滿足模3余2,滿足模5余1.輸出i=16.選C.12、C【解題分析】

根據(jù)含量詞命題的否定可知①錯誤;根據(jù)相關(guān)指數(shù)的特點可知R2越接近0,模型擬合度越低,可知②錯誤;根據(jù)四種命題的關(guān)系首先得到逆命題,利用不等式性質(zhì)可知③正確;分別在m=0和m≠0的情況下,根據(jù)解集為R確定不等關(guān)系,從而解得m【題目詳解】①根據(jù)全稱量詞的否定可知“?x>0,2x>sinx”的否定是“?x②相關(guān)指數(shù)R2越接近1,模型擬合度越高,即擬合效果越好;R2越接近③若“a>b>0,則3a>3b>0④當(dāng)m=0時,mx2-2當(dāng)m≠0時,若mx2-2m+1解得:m≥1,則④正確.∴正確的命題為:③④本題正確選項:C【題目點撥】本題考查命題真假性的判斷,涉及到含量詞命題的否定、四種命題的關(guān)系及真假性的判斷、相關(guān)指數(shù)的應(yīng)用、根據(jù)一元二次不等式解集為R求解參數(shù)范圍的知識.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由曲線與直線聯(lián)立,求出交點,以確定定積分中的取值范圍,最后根據(jù)定積分的幾何意義表示出區(qū)域的面積,根據(jù)定積分公式即可得到答案。【題目詳解】聯(lián)立,得到交點為,故曲線與直線,所圍成封閉圖形的面積;故答案為【題目點撥】本題考查利用定積分求面積,確定被積區(qū)間與被積函數(shù)是解題的關(guān)鍵,屬于基礎(chǔ)題。14、【解題分析】

由于事件為對立事件,故,代入即得解.【題目詳解】由于事件為對立事件,,且,故故答案為:【題目點撥】本題考查了互斥事件的概率求法,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運算的能力,屬于基礎(chǔ)題.15、216【解題分析】

每種顏色的燈泡都至少用一個,即用了四種顏色的燈進(jìn)行安裝,分

3

步進(jìn)行,第一步

,A

、B.

C

三點選三種顏色燈泡共有

種選法;第二步

,

A1

B1

、

C1

中選一個裝第

4

種顏色的燈泡,有

3

種情況;第三步

,

為剩下的兩個燈選顏色

,

假設(shè)剩下的為

B1

C1,

B1

A

同色

,

C1

只能選

B

點顏色;若

B1

C

同色

,

C1

有A.

B

處兩種顏色可選,故為

B1

、

C1

選燈泡共有

3

種選法,得到剩下的兩個燈有

3

種情況,則共有

×3×3=216

種方法.故答案為

21616、2【解題分析】

先由冪函數(shù)的定義,得到,求出,再由題意,根據(jù)冪函數(shù)的單調(diào)性,即可得出結(jié)果.【題目詳解】因為為冪函數(shù),所以或,又在上單調(diào)遞減,由冪函數(shù)的性質(zhì),可得:,解得:,所以.故答案為:.【題目點撥】本題主要考查由冪函數(shù)單調(diào)性求參數(shù),熟記冪函數(shù)的定義,以及冪函數(shù)的單調(diào)性即可,屬于??碱}型.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3).【解題分析】

(1)根據(jù)分層抽樣的原理建立關(guān)于的方程,解出即可;(2)先根據(jù)平均數(shù)建立關(guān)系式,然后根據(jù)方差建立關(guān)于、的等量關(guān)系,然后將用前面的關(guān)系式表示,即可求出的值;(3)設(shè)所抽樣本中有個精品型紀(jì)念品,則,求出,然后利用古典概型的概率公式求出事件“至少有個精品型紀(jì)念品”的概率.【題目詳解】(1)由題意可知,該工廠一天所生產(chǎn)的紀(jì)念品數(shù)為.現(xiàn)采用分層抽樣的方法在這一天生產(chǎn)的紀(jì)念品中抽取個,其中種紀(jì)念品有個,則,解得;(2)由題意可得,得.由于總體的方差為,則,可得,所以,;(3)設(shè)所抽取的樣本中有個精品型紀(jì)念品,則,解得,所以,容量為的樣本中,有個精品型紀(jì)念品,個普通型紀(jì)念品.因此,至少有個精品型紀(jì)念品的概率為.【題目點撥】本題考查分層抽樣、平均數(shù)與方差的計算,同時也考查了古典概型概率的計算,考查計算能力,屬于中等題.18、(1)見解析;(2).【解題分析】分析:求出,在定義域內(nèi),分別令求得的范圍,可得函數(shù)增區(qū)間,求得的范圍,可得函數(shù)的減區(qū)間,利用函數(shù)的單調(diào)性可求出函數(shù)的極值;(2)在上單調(diào)遞增等價于在上恒成立,求得導(dǎo)數(shù)和單調(diào)區(qū)間,討論與極值點的關(guān)系,結(jié)合單調(diào)性,運用參數(shù)分離和解不等式可得范圍.詳解:(1)當(dāng)時:的定義域為令,得當(dāng)時,,在上單調(diào)遞增;當(dāng)時,,在上單調(diào)遞減;當(dāng)時,的極大值為,無極小值.(2)在上單調(diào)遞增在上恒成立,只需在上恒成立在上恒成立令則令,則:①若即時在上恒成立在上單調(diào)遞減,這與矛盾,舍去②若即時當(dāng)時,,在上單調(diào)遞減;當(dāng)時,,在上單調(diào)遞增;當(dāng)時,有極小值,也是最小值,綜上點睛:本題主要考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)性以及不等式恒成立問題,屬于難題.不等式恒成立問題常見方法:①分離參數(shù)恒成立(即可)或恒成立(即可);②數(shù)形結(jié)合(圖象在上方即可);③討論最值或恒成立;④討論參數(shù).本題是利用方法①求得的最大值.19、(1)見解析(2)【解題分析】

分析:(1)取中點,連結(jié),由三角形中位線定理可得,可證明四邊形為平行四邊形,可得,由線面平行的判定定理可得結(jié)論;(2)取中點,連結(jié)、,先證明、、兩兩垂直.以為原點,分別以、、正方向為軸、軸、軸正方向建立空間直角坐標(biāo)系,設(shè),利用向量垂直數(shù)量積為零列方程組,求出平面的法向量,平面的法向量為,由空間向量夾角余弦公式列方程可得結(jié)果.詳解:(1)取中點,連結(jié),∵分別為、中點,∴//,,又點為中點,∴且,∴四邊形為平行四邊形,∴∥,又平面,平面,∴∥平面.(2)取中點,連結(jié)、,∵是以為直角的等腰直角三角形,又為的中點,∴,又平面⊥平面,由面面垂直的性質(zhì)定理得⊥平面,又平面,∴⊥,由已知易得:、、兩兩垂直.以為原點,分別以、、正方向為x軸、y軸、z軸正方向建立空間直角坐標(biāo)系如圖示,則,設(shè),則:,.設(shè)平面ABF的法向量為,則,∴,令,則,∴.又平面的法向量為,由二面角成角得:,∴,解得:,或不合題意,舍去.∴,當(dāng)棱上的點滿足時,二面角成角.點睛:利用法向量求解空間角的關(guān)鍵在于“四破”:第一,破“建系關(guān)”,構(gòu)建恰當(dāng)?shù)目臻g直角坐標(biāo)系;第二,破“求坐標(biāo)關(guān)”,準(zhǔn)確求解相關(guān)點的坐標(biāo);第三,破“求法向量關(guān)”,求出平面的法向量;第四,破“應(yīng)用公式關(guān)”.20、(1)分布列見解析,E(X)=2.(2)P(A)=.【解題分析】分析:(1)由已知先出白子個數(shù),進(jìn)而可得隨機(jī)變量X的概率分布列和數(shù)學(xué)期望;(2)記事件A為“甲摸到白色球”,則事件A包括以下三個互斥事件:A1=“甲第1次摸球時摸出白色球”;A2=“甲第2次摸球時摸出白色球”;A3=“甲第3次摸球時摸出白色球”,利用互斥事件概率加法公式可得.詳解:設(shè)袋中白色球共有x個,x∈N*且x≥2,則依題意知=,所以=,即x2-x-6=0,解得x=3(x=-2舍去).(1)袋中的7個球,3白4黑,隨機(jī)變量X的所有可能取值是1,2,3,4,5.P(X=1)==,P(X=2)==,P(X=3)==,P(X=4)==,P(X=5)==.隨機(jī)變量X的分布列為X12345P所以E(X)=1×+2×+3×+4×+5×=2.(2)記事件A為“甲摸到白色球”,則事件A包括以下三個互斥事件:A1=“甲第1次摸球時摸出白色球”;A2=“甲第2次摸球時摸出白色球”;A3=“甲第3次摸球時摸出白色球”.依題意知,P(A1)==,P(A2)==,P(A3)==,所以甲摸到白色球的概率為P(A)=P(A1)+P(A2)+P(A3)=++=.點睛:本題考查的知識點是古典概型的概率計算公式,隨機(jī)變量的分布列和數(shù)學(xué)期望,互斥事件概率加法公式.21、(1)有的把握認(rèn)為關(guān)注“一帶一路”和年齡段有關(guān)(2)【解題分析】試題分析:(1)依題意完成列聯(lián)表,計算,對照臨界值得出結(jié)論;(2)根據(jù)分層抽樣法,得出隨機(jī)變量的可能取值,計算對應(yīng)的概率值,寫出的分布列,計算出數(shù)學(xué)期望值.試題解析:(1)依

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論