版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆江西名校高考數(shù)學考前最后一卷預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.關于函數(shù),有下述三個結論:①函數(shù)的一個周期為;②函數(shù)在上單調遞增;③函數(shù)的值域為.其中所有正確結論的編號是()A.①② B.② C.②③ D.③2.對于定義在上的函數(shù),若下列說法中有且僅有一個是錯誤的,則錯誤的一個是()A.在上是減函數(shù) B.在上是增函數(shù)C.不是函數(shù)的最小值 D.對于,都有3.已知復數(shù),則()A. B. C. D.4.若平面向量,滿足,則的最大值為()A. B. C. D.5.已知函數(shù)若關于的方程有六個不相等的實數(shù)根,則實數(shù)的取值范圍為()A. B. C. D.6.執(zhí)行如圖所示的程序框圖,若輸出的結果為3,則可輸入的實數(shù)值的個數(shù)為()A.1 B.2 C.3 D.47.已知實數(shù)滿足不等式組,則的最小值為()A. B. C. D.8.已知正項等比數(shù)列滿足,若存在兩項,,使得,則的最小值為().A.16 B. C.5 D.49.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.10.已知,滿足約束條件,則的最大值為A. B. C. D.11.如圖,在矩形中的曲線分別是,的一部分,,,在矩形內隨機取一點,若此點取自陰影部分的概率為,取自非陰影部分的概率為,則()A. B. C. D.大小關系不能確定12.為比較甲、乙兩名高中學生的數(shù)學素養(yǎng),對課程標準中規(guī)定的數(shù)學六大素養(yǎng)進行指標測驗(指標值滿分為100分,分值高者為優(yōu)),根據(jù)測驗情況繪制了如圖所示的六大素養(yǎng)指標雷達圖,則下面敘述不正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙 B.乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng)C.甲的六大素養(yǎng)整體水平優(yōu)于乙 D.甲的六大素養(yǎng)中數(shù)學運算最強二、填空題:本題共4小題,每小題5分,共20分。13.設滿足約束條件,則的取值范圍為__________.14.某部隊在訓練之余,由同一場地訓練的甲?乙?丙三隊各出三人,組成小方陣開展游戲,則來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率為______.15.袋中有形狀、大小都相同的4只球,其中1只白球,1只紅球,2只黃球,從中一次隨機摸出2只球,則這2只球顏色不同的概率為__________.16.正方體的棱長為2,是它的內切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面是邊長為2的菱形,,.(1)證明:平面平面ABCD;(2)設H在AC上,,若,求PH與平面PBC所成角的正弦值.18.(12分)已知函數(shù),其中為自然對數(shù)的底數(shù),.(1)若曲線在點處的切線與直線平行,求的值;(2)若,問函數(shù)有無極值點?若有,請求出極值點的個數(shù);若沒有,請說明理由.19.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設二面角的大小為,求的值.20.(12分)設函數(shù).(1)若,求函數(shù)的值域;(2)設為的三個內角,若,求的值;21.(12分)已知函數(shù).(1)當時,試求曲線在點處的切線;(2)試討論函數(shù)的單調區(qū)間.22.(10分)已知函數(shù).(1)討論函數(shù)f(x)的極值點的個數(shù);(2)若f(x)有兩個極值點證明.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
①用周期函數(shù)的定義驗證.②當時,,,再利用單調性判斷.③根據(jù)平移變換,函數(shù)的值域等價于函數(shù)的值域,而,當時,再求值域.【詳解】因為,故①錯誤;當時,,所以,所以在上單調遞增,故②正確;函數(shù)的值域等價于函數(shù)的值域,易知,故當時,,故③正確.故選:C.【點睛】本題考查三角函數(shù)的性質,還考查推理論證能力以及分類討論思想,屬于中檔題.2、B【解析】
根據(jù)函數(shù)對稱性和單調性的關系,進行判斷即可.【詳解】由得關于對稱,若關于對稱,則函數(shù)在上不可能是單調的,故錯誤的可能是或者是,若錯誤,則在,上是減函數(shù),在在上是增函數(shù),則為函數(shù)的最小值,與矛盾,此時也錯誤,不滿足條件.故錯誤的是,故選:.【點睛】本題主要考查函數(shù)性質的綜合應用,結合對稱性和單調性的關系是解決本題的關鍵.3、B【解析】
利用復數(shù)除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數(shù)的除法運算、加法運算,考查復數(shù)的模,屬于基礎題.4、C【解析】
可根據(jù)題意把要求的向量重新組合成已知向量的表達,利用向量數(shù)量積的性質,化簡為三角函數(shù)最值.【詳解】由題意可得:,,,故選:C【點睛】本題主要考查根據(jù)已知向量的模求未知向量的模的方法技巧,把要求的向量重新組合成已知向量的表達是本題的關鍵點.本題屬中檔題.5、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數(shù)根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數(shù)問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數(shù)形結合的思想,是一道中檔題.6、C【解析】試題分析:根據(jù)題意,當時,令,得;當時,令,得,故輸入的實數(shù)值的個數(shù)為1.考點:程序框圖.7、B【解析】
作出約束條件的可行域,在可行域內求的最小值即為的最小值,作,平移直線即可求解.【詳解】作出實數(shù)滿足不等式組的可行域,如圖(陰影部分)令,則,作出,平移直線,當直線經(jīng)過點時,截距最小,故,即的最小值為.故選:B【點睛】本題考查了簡單的線性規(guī)劃問題,解題的關鍵是作出可行域、理解目標函數(shù)的意義,屬于基礎題.8、D【解析】
由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【詳解】設等比數(shù)列公比為,由已知,,即,解得或(舍),又,所以,即,故,所以,當且僅當時,等號成立.故選:D.【點睛】本題考查利用基本不等式求式子和的最小值問題,涉及到等比數(shù)列的知識,是一道中檔題.9、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.10、D【解析】
作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,利用數(shù)形結合即可得到結論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價于,作直線,向上平移,易知當直線經(jīng)過點時最大,所以,故選D.【點睛】本題主要考查線性規(guī)劃的應用,利用目標函數(shù)的幾何意義,結合數(shù)形結合的數(shù)學思想是解決此類問題的基本方法.11、B【解析】
先用定積分求得陰影部分一半的面積,再根據(jù)幾何概型概率公式可求得.【詳解】根據(jù)題意,陰影部分的面積的一半為:,于是此點取自陰影部分的概率為.又,故.故選B.【點睛】本題考查了幾何概型,定積分的計算以及幾何意義,屬于中檔題.12、D【解析】
根據(jù)所給的雷達圖逐個選項分析即可.【詳解】對于A,甲的數(shù)據(jù)分析素養(yǎng)為100分,乙的數(shù)據(jù)分析素養(yǎng)為80分,故甲的數(shù)據(jù)分析素養(yǎng)優(yōu)于乙,故A正確;對于B,乙的數(shù)據(jù)分析素養(yǎng)為80分,數(shù)學建模素養(yǎng)為60分,故乙的數(shù)據(jù)分析素養(yǎng)優(yōu)于數(shù)學建模素養(yǎng),故B正確;對于C,甲的六大素養(yǎng)整體水平平均得分為,乙的六大素養(yǎng)整體水平均得分為,故C正確;對于D,甲的六大素養(yǎng)中數(shù)學運算為80分,不是最強的,故D錯誤;故選:D【點睛】本題考查了樣本數(shù)據(jù)的特征、平均數(shù)的計算,考查了學生的數(shù)據(jù)處理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題意畫出可行域,轉化目標函數(shù)為,數(shù)形結合即可得到的最值,即可得解.【詳解】由題意畫出可行域,如圖:轉化目標函數(shù)為,通過平移直線,數(shù)形結合可知:當直線過點A時,直線截距最大,z最??;當直線過點C時,直線截距最小,z最大.由可得,由可得,當直線過點時,;當直線過點時,,所以.故答案為:.【點睛】本題考查了簡單的線性規(guī)劃,考查了數(shù)形結合思想,屬于基礎題.14、【解析】
分兩步進行:首先,先排第一行,再排第二行,最后排第三行;其次,對每一行選人;最后,利用計算出概率即可.【詳解】首先,第一行隊伍的排法有種;第二行隊伍的排法有2種;第三行隊伍的排法有1種;然后,第一行的每個位置的人員安排有種;第二行的每個位置的人員安排有種;第三行的每個位置的人員安排有種.所以來自同一隊的戰(zhàn)士既不在同一行,也不在同一列的概率.故答案為:.【點睛】本題考查了分步計數(shù)原理,排列與組合知識,考查了轉化能力,屬于中檔題.15、【解析】試題分析:根據(jù)題意,記白球為A,紅球為B,黃球為,則一次取出2只球,基本事件為、、、、、共6種,其中2只球的顏色不同的是、、、、共5種;所以所求的概率是.考點:古典概型概率16、【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數(shù)量積的運算,正方體內切球性質應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)記,連結,推導出,平面,由此能證明平面平面;(2)推導出,平面,連結,由題意得為的重心,,從而平面平面,進而是與平面所成角,由此能求出與平面所成角的正弦值.【詳解】(1)證明:記,連結,中,,,,,,平面,平面,平面平面.(2)中,,,,,,,,,,平面,∴,連結,由題意得為的重心,,,,平面平面平面,∴在平面的射影落在上,是與平面所成角,中,,,,.與平面所成角的正弦值為.【點睛】本題考查面面垂直的證明,考查線面角的正弦值的求法,考查線線、線面、面面的位置關系等基礎知識,考查運算求解能力,是中檔題.18、(1)(2)沒有,理由見解析【解析】
(1)求導,研究函數(shù)在x=0處的導數(shù),等于切線斜率,即得解;(2)對f(x)求導,構造,可證得,得到,即得解【詳解】(1)由題意得,∵曲線在點處的切線與直線平行,∴切線的斜率為,解得.(2)當時,,,設,則,則函數(shù)在區(qū)間上單調遞減,在區(qū)間上單調遞增,又函數(shù),故恒成立,∴函數(shù)在定義域內單調遞增,函數(shù)不存在極值點.【點睛】本題考查了導數(shù)在切線問題和函數(shù)極值問題中的應用,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.19、(1)證明見解析;(2).【解析】
(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,四邊形為菱形,且,則為正三角形,取的中點D,連接BD,則.以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,則,,,,.設平面的法向量為,且,.由得取.由四邊形為菱形,得;又平面,所以;又,所以平面,所以平面的法向量為.所以.故.【點睛】本題考查面面垂直的判定定理以及利用向量法求二面角正弦值的問題,在利用向量法時,關鍵是點的坐標要寫準確,本題是一道中檔題.20、(1)(2)【解析】
(1)將,利用三角恒等變換轉化為:,,再根據(jù)正弦函數(shù)的性質求解,(2)根據(jù),得,又為的內角,得到,再根據(jù),利用兩角和與差的余弦公式求解,【詳解】(1),,,,即的值域為;(2)由,得,又為的內角,所以,又因為在中,,所以,所以.【點睛】本題主要考查三角恒等變換和三角函數(shù)的性質,還考查了運算求解的能力,屬于中檔題,21、(1);(2)見解析【解析】
(1)對函數(shù)進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數(shù)進行求導,對實數(shù)進行分類討論,可以
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 單位管理制度展示大合集職員管理篇
- 2025年度宏觀報告:內觀者取足于身
- 2025關于流動資金借款合同的范本
- 2025重慶市裝飾裝修工程施工合同樣板合同
- 中國抵押貸款行業(yè)市場深度分析及投資策略研究報告
- 2025年中國手術器械行業(yè)市場深度分析及投資戰(zhàn)略規(guī)劃研究報告
- 2025農(nóng)村房屋轉讓協(xié)議合同范本
- 2021-2026年中國旅游業(yè)行業(yè)發(fā)展監(jiān)測及投資戰(zhàn)略規(guī)劃研究報告
- 中國混合云管理行業(yè)市場全景評估及投資規(guī)劃建議報告
- 2025規(guī)范借款合同范本
- 安全生產(chǎn)培訓法律法規(guī)
- 廣東省廣州市2021-2022學年高二上學期期末五校聯(lián)考生物試題
- 2023-2024學年浙江省寧波市鎮(zhèn)海區(qū)四年級(上)期末數(shù)學試卷
- 舞蹈演出編導排練合同模板
- 腸梗阻課件完整版本
- 融資合作法律意見
- 2024年度技術研發(fā)合作合同with知識產(chǎn)權歸屬與利益分配
- 污水泵站運營維護管理方案
- 廣東省梅州市2023-2024學年高一上學期期末考試 歷史 含解析
- 湖北省武漢市洪山區(qū)2023-2024學年六年級上學期語文期末試卷(含答案)
- 2024下半年軟考信息安全工程師考試真題-及答案-打印
評論
0/150
提交評論