安徽省定遠縣藕塘中學2024屆高三下學期一??荚嚁祵W試題含解析_第1頁
安徽省定遠縣藕塘中學2024屆高三下學期一模考試數學試題含解析_第2頁
安徽省定遠縣藕塘中學2024屆高三下學期一??荚嚁祵W試題含解析_第3頁
安徽省定遠縣藕塘中學2024屆高三下學期一模考試數學試題含解析_第4頁
安徽省定遠縣藕塘中學2024屆高三下學期一??荚嚁祵W試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省定遠縣藕塘中學2024屆高三下學期一??荚嚁祵W試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數列的通項公式為,將這個數列中的項擺放成如圖所示的數陣.記為數陣從左至右的列,從上到下的行共個數的和,則數列的前2020項和為()A. B. C. D.2.關于圓周率,數學發(fā)展史上出現過許多很有創(chuàng)意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發(fā),某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區(qū)間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.3.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.4.設全集,集合,則=()A. B. C. D.5.設全集集合,則()A. B. C. D.6.網格紙上小正方形邊長為1單位長度,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()A.1 B. C.3 D.47.集合,則集合的真子集的個數是A.1個 B.3個 C.4個 D.7個8.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.9.已知雙曲線滿足以下條件:①雙曲線E的右焦點與拋物線的焦點F重合;②雙曲線E與過點的冪函數的圖象交于點Q,且該冪函數在點Q處的切線過點F關于原點的對稱點.則雙曲線的離心率是()A. B. C. D.10.“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分又不必要條件11.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.12.()A. B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知復數z1=1﹣2i,z2=a+2i(其中i是虛數單位,a∈R),若z1?z2是純虛數,則a的值為_____.14.某學習小組有名男生和名女生.若從中隨機選出名同學代表該小組參加知識競賽,則選出的名同學中恰好名男生名女生的概率為___________.15.已知邊長為的菱形中,,現沿對角線折起,使得二面角為,此時點,,,在同一個球面上,則該球的表面積為________.16.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數字1,2,3,4,5,6的正方體),觀察向上的點數,則事件“點數之積是3的倍數”的概率為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)改革開放年,我國經濟取得飛速發(fā)展,城市汽車保有量在不斷增加,人們的交通安全意識也需要不斷加強.為了解某城市不同性別駕駛員的交通安全意識,某小組利用假期進行一次全市駕駛員交通安全意識調查.隨機抽取男女駕駛員各人,進行問卷測評,所得分數的頻率分布直方圖如圖所示在分以上為交通安全意識強.求的值,并估計該城市駕駛員交通安全意識強的概率;已知交通安全意識強的樣本中男女比例為,完成下列列聯表,并判斷有多大把握認為交通安全意識與性別有關;安全意識強安全意識不強合計男性女性合計用分層抽樣的方式從得分在分以下的樣本中抽取人,再從人中隨機選取人對未來一年內的交通違章情況進行跟蹤調查,求至少有人得分低于分的概率.附:其中18.(12分)已知函數為實數)的圖像在點處的切線方程為.(1)求實數的值及函數的單調區(qū)間;(2)設函數,證明時,.19.(12分)如圖,在四棱錐中,是等邊三角形,,,.(1)若,求證:平面;(2)若,求二面角的正弦值.20.(12分)已知函數.(1)當時,不等式恒成立,求的最小值;(2)設數列,其前項和為,證明:.21.(12分)已知首項為2的數列滿足.(1)證明:數列是等差數列.(2)令,求數列的前項和.22.(10分)設首項為1的正項數列{an}的前n項和為Sn,數列的前n項和為Tn,且,其中p為常數.(1)求p的值;(2)求證:數列{an}為等比數列;(3)證明:“數列an,2xan+1,2yan+2成等差數列,其中x、y均為整數”的充要條件是“x=1,且y=2”.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由題意,設每一行的和為,可得,繼而可求解,表示,裂項相消即可求解.【詳解】由題意,設每一行的和為故因此:故故選:D【點睛】本題考查了等差數列型數陣的求和,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.2、B【解析】

先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區(qū)間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.3、A【解析】

先根據已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學生對這些知識的掌握水平和分析推理能力.4、A【解析】

先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎題.5、A【解析】

先求出,再與集合N求交集.【詳解】由已知,,又,所以.故選:A.【點睛】本題考查集合的基本運算,涉及到補集、交集運算,是一道容易題.6、A【解析】

采用數形結合,根據三視圖可知該幾何體為三棱錐,然后根據錐體體積公式,可得結果.【詳解】根據三視圖可知:該幾何體為三棱錐如圖該幾何體為三棱錐,長度如上圖所以所以所以故選:A【點睛】本題考查根據三視圖求直觀圖的體積,熟悉常見圖形的三視圖:比如圓柱,圓錐,球,三棱錐等;對本題可以利用長方體,根據三視圖刪掉沒有的點與線,屬中檔題.7、B【解析】

由題意,結合集合,求得集合,得到集合中元素的個數,即可求解,得到答案.【詳解】由題意,集合,則,所以集合的真子集的個數為個,故選B.【點睛】本題主要考查了集合的運算和集合中真子集的個數個數的求解,其中作出集合的運算,得到集合,再由真子集個數的公式作出計算是解答的關鍵,著重考查了推理與運算能力.8、C【解析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【點睛】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.9、B【解析】

由已知可求出焦點坐標為,可求得冪函數為,設出切點通過導數求出切線方程的斜率,利用斜率相等列出方程,即可求出切點坐標,然后求解雙曲線的離心率.【詳解】依題意可得,拋物線的焦點為,F關于原點的對稱點;,,所以,,設,則,解得,∴,可得,又,,可解得,故雙曲線的離心率是.故選B.【點睛】本題考查雙曲線的性質,已知拋物線方程求焦點坐標,求冪函數解析式,直線的斜率公式及導數的幾何意義,考查了學生分析問題和解決問題的能力,難度一般.10、A【解析】

首先利用二倍角正切公式由,求出,再根據充分條件、必要條件的定義判斷即可;【詳解】解:∵,∴可解得或,∴“”是“”的充分不必要條件.故選:A【點睛】本題主要考查充分條件和必要條件的判斷,二倍角正切公式的應用是解決本題的關鍵,屬于基礎題.11、B【解析】

模擬程序框圖運行分析即得解.【詳解】;;.所以①處應填寫“”故選:B【點睛】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.12、A【解析】

利用復數的乘方和除法法則將復數化為一般形式,結合復數的模長公式可求得結果.【詳解】,,因此,.故選:A.【點睛】本題考查復數模長的計算,同時也考查了復數的乘方和除法法則的應用,考查計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

由題意,令即可得解.【詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數,∴,解得:a=﹣1.故答案為:﹣1.【點睛】本題考查了復數的概念和運算,屬于基礎題.14、【解析】

從7人中選出2人則總數有,符合條件數有,后者除以前者即得結果【詳解】從7人中隨機選出2人的總數有,則記選出的名同學中恰好名男生名女生的概率為事件,∴故答案為:【點睛】組合數與概率的基本運用,熟悉組合數公式15、【解析】

分別取,的中點,,連接,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,由勾股定理可得、,再根據球的面積公式計算可得;【詳解】如圖,分別取,的中點,,連接,則易得,,,,由圖形的對稱性可知球心必在的延長線上,設球心為,半徑為,,可得,解得,.故該球的表面積為.故答案為:【點睛】本題考查多面體的外接球的計算,屬于中檔題.16、【解析】總事件數為,目標事件:當第一顆骰子為1,2,4,6,具體事件有,共8種;當第一顆骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、,概率為;列聯表詳見解析,有的把握認為交通安全意識與性別有關;.【解析】

根據頻率和為列方程求得的值,計算得分在分以上的頻率即可;根據題意填寫列聯表,計算的值,對照臨界值得出結論;用分層抽樣法求得抽取各分數段人數,用列舉法求出基本事件數,計算所求的概率值.【詳解】解:解得.所以,該城市駕駛員交通安全意識強的概率根據題意可知,安全意識強的人數有,其中男性為人,女性為人,填寫列聯表如下:安全意識強安全意識不強合計男性女性合計所以有的把握認為交通安全意識與性別有關.由題意可知分數在,的分別為名和名,所以分層抽取的人數分別為名和名,設的為,,的為,,,,則基本事件空間為,,,,,,,,,,,,,,共種,設至少有人得分低于分的事件為,則事件包含的基本事件有,,,,,,,,共種所以.【點睛】本題考查獨立性檢驗應用問題,也考查了列舉法求古典概型的概率問題,屬于中檔題.18、(1);函數的單調遞減區(qū)間為,單調遞增區(qū)間為;(2)詳見解析.【解析】

試題分析:(1)由題得,根據曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數的單調區(qū)間;(2)由(1)得根據由,整理得,設,轉化為函數的最值,即可作出證明.試題解析:(1)由題得,函數的定義域為,,因為曲線在點處的切線方程為,所以解得.令,得,當時,,在區(qū)間內單調遞減;當時,,在區(qū)間內單調遞增.所以函數的單調遞減區(qū)間為,單調遞增區(qū)間為.(2)由(1)得,.由,得,即.要證,需證,即證,設,則要證,等價于證:.令,則,∴在區(qū)間內單調遞增,,即,故.19、(1)詳見解析(2)【解析】

(1)如圖,作,交于,連接.因為,所以是的三等分點,可得.因為,,,所以,因為,所以,因為,所以,所以,因為,所以,所以,因為平面,平面,所以平面.又,平面,平面,所以平面.因為,、平面,所以平面平面,所以平面.(2)因為是等邊三角形,,所以.又因為,,所以,所以.又,平面,,所以平面.因為平面,所以平面平面.在平面內作平面.以B點為坐標原點,分別以所在直線為軸,建立如圖所示的空間直角坐標系,則,,,所以,,,.設為平面的法向量,則,即,令,可得.設為平面的法向量,則,即,令,可得.所以,則,所以二面角的正弦值為.20、(1);(2)證明見解析.【解析】

(1),分,,三種情況推理即可;(2)由(1)可得,即,利用累加法即可得到證明.【詳解】(1)由,得.當時,方程的,因此在區(qū)間上恒為負數.所以時,,函數在區(qū)間上單調遞減.又,所以函數在區(qū)間上恒成立;當時,方程有兩個不等實根,且滿足,所以函數的導函數在區(qū)間上大于零,函數在區(qū)間上單增,又,所以函數在區(qū)間上恒大于零,不滿足題意;當時,在區(qū)間上,函數在區(qū)間上恒為正數,所以在區(qū)間上恒為正數,不滿足題意;綜上可知:若時,不等式恒成立,的最小值為.(2)由第(1)知:若時,.若,則,即成立.將換成,得成立,即,以此類推,得,,上述各式相加,得,又,所以.【點睛】本題考查利用導數研究函數恒成立問題、證明數列不等式問題,考查學生的邏輯推理能力以及數學計算能力,是一道難題.21、(1)見解析;(2)【解析】

(1)由原式可得,等式兩端同時除以,可得到,即可證明結論;(2)由(1)可求得的表達式,進而可求得的表達式,然后求出的前項和即可.【詳解】(1)證明:因為,所以,所以,從而,因為,所以,故數列是首項為1,公差為1的等差數列.(2)由(1)可知,則,因為,所以,則.【點睛】本題考查了等差

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論