版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省江淮名校2023-2024學(xué)年高三下學(xué)期一??荚嚁?shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.2.已知滿足,則的取值范圍為()A. B. C. D.3.集合中含有的元素個(gè)數(shù)為()A.4 B.6 C.8 D.124.已知向量,則是的()A.充分不必要條件 B.必要不充分條件C.既不充分也不必要條件 D.充要條件5.若不相等的非零實(shí)數(shù),,成等差數(shù)列,且,,成等比數(shù)列,則()A. B. C.2 D.6.復(fù)數(shù)的虛部為()A.—1 B.—3 C.1 D.27.已知函數(shù),則()A. B. C. D.8.已知數(shù)列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-19.已知實(shí)數(shù)滿足約束條件,則的最小值為()A.-5 B.2 C.7 D.1110.已知雙曲線:的焦點(diǎn)為,,且上點(diǎn)滿足,,,則雙曲線的離心率為A. B. C. D.511.現(xiàn)有甲、乙、丙、丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),則乙、丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為A. B. C. D.12.如圖,在中,點(diǎn)是的中點(diǎn),過點(diǎn)的直線分別交直線,于不同的兩點(diǎn),若,,則()A.1 B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.正四棱柱中,,.若是側(cè)面內(nèi)的動(dòng)點(diǎn),且,則與平面所成角的正切值的最大值為___________.14.在中,,.若,則_________.15.設(shè),若關(guān)于的方程有實(shí)數(shù)解,則實(shí)數(shù)的取值范圍_____.16.已知平面向量,的夾角為,且,則=____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)某超市計(jì)劃按月訂購(gòu)一種酸奶,每天進(jìn)貨量相同,進(jìn)貨成本每瓶4元,售價(jià)每瓶6元,未售出的酸奶降價(jià)處理,以每瓶2元的價(jià)格當(dāng)天全部處理完.根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間[20,25),需求量為300瓶;如果最高氣溫低于20,需求量為200瓶.為了確定六月份的訂購(gòu)計(jì)劃,統(tǒng)計(jì)了前三年六月份各天的最高氣溫?cái)?shù)據(jù),得下面的頻數(shù)分布表:最高氣溫[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天數(shù)216362574以最高氣溫位于各區(qū)間的頻率估計(jì)最高氣溫位于該區(qū)間的概率.(1)求六月份這種酸奶一天的需求量不超過300瓶的概率;(2)設(shè)六月份一天銷售這種酸奶的利潤(rùn)為Y(單位:元),當(dāng)六月份這種酸奶一天的進(jìn)貨量為450瓶時(shí),寫出Y的所有可能值,并估計(jì)Y大于零的概率.18.(12分)在平面直角坐標(biāo)系xoy中,曲線C的方程為.以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)寫出曲線C的極坐標(biāo)方程,并求出直線l與曲線C的交點(diǎn)M,N的極坐標(biāo);(2)設(shè)P是橢圓上的動(dòng)點(diǎn),求面積的最大值.19.(12分)設(shè)數(shù)列,的各項(xiàng)都是正數(shù),為數(shù)列的前n項(xiàng)和,且對(duì)任意,都有,,,(e是自然對(duì)數(shù)的底數(shù)).(1)求數(shù)列,的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.20.(12分)已知函數(shù)(1)解不等式;(2)若函數(shù),若對(duì)于任意的,都存在,使得成立,求實(shí)數(shù)的取值范圍.21.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.22.(10分)在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為.(1)求曲線C的極坐標(biāo)方程和直線l的直角坐標(biāo)方程;(2)若射線與曲線C交于點(diǎn)A(不同于極點(diǎn)O),與直線l交于點(diǎn)B,求的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題2、C【解析】
設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】解:設(shè),則的幾何意義為點(diǎn)到點(diǎn)的斜率,作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:由圖可知當(dāng)過點(diǎn)的直線平行于軸時(shí),此時(shí)成立;取所有負(fù)值都成立;當(dāng)過點(diǎn)時(shí),取正值中的最小值,,此時(shí);故的取值范圍為;故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單線性規(guī)劃的非線性目標(biāo)函數(shù)函數(shù)問題,解題時(shí)作出可行域,利用目標(biāo)函數(shù)的幾何意義求解是解題關(guān)鍵.對(duì)于直線斜率要注意斜率不存在的直線是否存在.3、B【解析】解:因?yàn)榧现械脑乇硎镜氖潜?2整除的正整數(shù),那么可得為1,2,3,4,6,,12故選B4、A【解析】
向量,,,則,即,或者-1,判斷出即可.【詳解】解:向量,,,則,即,或者-1,所以是或者的充分不必要條件,故選:A.【點(diǎn)睛】本小題主要考查充分、必要條件的判斷,考查向量平行的坐標(biāo)表示,屬于基礎(chǔ)題.5、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數(shù)列,所以,又,,成等比數(shù)列,所以,消去得,所以,解得或,因?yàn)椋?,是不相等的非零?shí)數(shù),所以,此時(shí),所以.故選:A【點(diǎn)睛】本題考查了等差等比數(shù)列的綜合應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.6、B【解析】
對(duì)復(fù)數(shù)進(jìn)行化簡(jiǎn)計(jì)算,得到答案.【詳解】所以的虛部為故選B項(xiàng).【點(diǎn)睛】本題考查復(fù)數(shù)的計(jì)算,虛部的概念,屬于簡(jiǎn)單題.7、A【解析】
根據(jù)分段函數(shù)解析式,先求得的值,再求得的值.【詳解】依題意,.故選:A【點(diǎn)睛】本小題主要考查根據(jù)分段函數(shù)解析式求函數(shù)值,屬于基礎(chǔ)題.8、D【解析】試題分析:因?yàn)閍n+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點(diǎn):數(shù)列的通項(xiàng)公式.9、A【解析】
根據(jù)約束條件畫出可行域,再將目標(biāo)函數(shù)化成斜截式,找到截距的最小值.【詳解】由約束條件,畫出可行域如圖變?yōu)闉樾甭蕿?3的一簇平行線,為在軸的截距,最小的時(shí)候?yàn)檫^點(diǎn)的時(shí)候,解得所以,此時(shí)故選A項(xiàng)【點(diǎn)睛】本題考查線性規(guī)劃求一次相加的目標(biāo)函數(shù),屬于常規(guī)題型,是簡(jiǎn)單題.10、D【解析】
根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點(diǎn)睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運(yùn)算能力.11、B【解析】
求得基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,利用古典概型及其概率的計(jì)算公式,即可求解.【詳解】由題意,現(xiàn)有甲乙丙丁4名學(xué)生平均分成兩個(gè)志愿者小組到校外參加兩項(xiàng)活動(dòng),基本事件的總數(shù)為,其中乙丙兩人恰好參加同一項(xiàng)活動(dòng)的基本事件個(gè)數(shù)為,所以乙丙兩人恰好參加同一項(xiàng)活動(dòng)的概率為,故選B.【點(diǎn)睛】本題主要考查了排列組合的應(yīng)用,以及古典概型及其概率的計(jì)算問題,其中解答中合理應(yīng)用排列、組合的知識(shí)求得基本事件的總數(shù)和所求事件所包含的基本事件的個(gè)數(shù),利用古典概型及其概率的計(jì)算公式求解是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.12、C【解析】
連接AO,因?yàn)镺為BC中點(diǎn),可由平行四邊形法則得,再將其用,表示.由M、O、N三點(diǎn)共線可知,其表達(dá)式中的系數(shù)和,即可求出的值.【詳解】連接AO,由O為BC中點(diǎn)可得,,、、三點(diǎn)共線,,.故選:C.【點(diǎn)睛】本題考查了向量的線性運(yùn)算,由三點(diǎn)共線求參數(shù)的問題,熟記向量的共線定理是關(guān)鍵.屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、2.【解析】
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),由得,證明為與平面所成角,令,用三角函數(shù)表示出,求解三角函數(shù)的最大值得到結(jié)果.【詳解】如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)點(diǎn),則,,又,得即;又平面,為與平面所成角,令,當(dāng)時(shí),最大,即與平面所成角的正切值的最大值為2.故答案為:2【點(diǎn)睛】本題主要考查了立體幾何中的動(dòng)點(diǎn)問題,考查了直線與平面所成角的計(jì)算.對(duì)于這類題,一般是建立空間直角坐標(biāo),在動(dòng)點(diǎn)坐標(biāo)內(nèi)引入?yún)?shù),將最值問題轉(zhuǎn)化為函數(shù)的最值問題求解,考查了學(xué)生的運(yùn)算求解能力和直觀想象能力.14、【解析】分析:首先設(shè)出相應(yīng)的直角邊長(zhǎng),利用余弦勾股定理得到相應(yīng)的斜邊長(zhǎng),之后應(yīng)用余弦定理得到直角邊長(zhǎng)之間的關(guān)系,從而應(yīng)用正切函數(shù)的定義,對(duì)邊比臨邊,求得對(duì)應(yīng)角的正切值,即可得結(jié)果.詳解:根據(jù)題意,設(shè),則,根據(jù),得,由勾股定理可得,根據(jù)余弦定理可得,化簡(jiǎn)整理得,即,解得,所以,故答案是.點(diǎn)睛:該題考查的是有關(guān)解三角形的問題,在解題的過程中,注意分析要求對(duì)應(yīng)角的正切值,需要求誰,而題中所給的條件與對(duì)應(yīng)的結(jié)果之間有什么樣的連線,設(shè)出直角邊長(zhǎng),利用所給的角的余弦值,利用余弦定理得到相應(yīng)的等量關(guān)系,求得最后的結(jié)果.15、【解析】
先求出,從而得函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).即可得的最大值為,令,得函數(shù)取得最小值,由有實(shí)數(shù)解,,進(jìn)而得實(shí)數(shù)的取值范圍.【詳解】解:,當(dāng)時(shí),;當(dāng)時(shí),;函數(shù)在區(qū)間上為增函數(shù);在區(qū)間為減函數(shù).所以的最大值為,令,所以當(dāng)時(shí),函數(shù)取得最小值,又因?yàn)榉匠逃袑?shí)數(shù)解,那么,即,所以實(shí)數(shù)的取值范圍是:.故答案為:【點(diǎn)睛】本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,導(dǎo)數(shù)的應(yīng)用,屬于中檔題.16、1【解析】
根據(jù)平面向量模的定義先由坐標(biāo)求得,再根據(jù)平面向量數(shù)量積定義求得;將化簡(jiǎn)并代入即可求得.【詳解】,則,平面向量,的夾角為,則由平面向量數(shù)量積定義可得,根據(jù)平面向量模的求法可知,代入可得,解得,故答案為:1.【點(diǎn)睛】本題考查了平面向量模的求法及簡(jiǎn)單應(yīng)用,平面向量數(shù)量積的定義及運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2).【解析】
(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),求出最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù),由此能求出六月份這種酸奶一天的需求量不超過300瓶的概率.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,求出Y=900元;當(dāng)溫度在[20,25)℃時(shí),需求量為300,求出Y=300元;當(dāng)溫度低于20℃時(shí),需求量為200,求出Y=﹣100元,從而當(dāng)溫度大于等于20時(shí),Y>0,由此能估計(jì)估計(jì)Y大于零的概率.【詳解】解:(1)由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得到最高氣溫位于區(qū)間[20,25)和最高氣溫低于20的天數(shù)為2+16+36=54,根據(jù)往年銷售經(jīng)驗(yàn),每天需求量與當(dāng)天最高氣溫(單位:℃)有關(guān).如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間[20,25),需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,∴六月份這種酸奶一天的需求量不超過300瓶的概率p.(2)當(dāng)溫度大于等于25℃時(shí),需求量為500,Y=450×2=900元,當(dāng)溫度在[20,25)℃時(shí),需求量為300,Y=300×2﹣(450﹣300)×2=300元,當(dāng)溫度低于20℃時(shí),需求量為200,Y=400﹣(450﹣200)×2=﹣100元,當(dāng)溫度大于等于20時(shí),Y>0,由前三年六月份各天的最高氣溫?cái)?shù)據(jù),得當(dāng)溫度大于等于20℃的天數(shù)有:90﹣(2+16)=72,∴估計(jì)Y大于零的概率P.【點(diǎn)睛】本題考查概率的求法,考查利潤(rùn)的所有可能取值的求法,考查函數(shù)、古典概型等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力、空間想象能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.18、(1),,;(2).【解析】
(1)利用公式即可求得曲線的極坐標(biāo)方程;聯(lián)立直線和曲線的極坐標(biāo)方程,即可求得交點(diǎn)坐標(biāo);(2)設(shè)出點(diǎn)坐標(biāo)的參數(shù)形式,將問題轉(zhuǎn)化為求三角函數(shù)最值的問題即可求得.【詳解】(1)曲線的極坐標(biāo)方程:聯(lián)立,得,又因?yàn)槎紳M足兩方程,故兩曲線的交點(diǎn)為,.(2)易知,直線.設(shè)點(diǎn),則點(diǎn)到直線的距離(其中).面積的最大值為.【點(diǎn)睛】本題考查極坐標(biāo)方程和直角坐標(biāo)方程之間的相互轉(zhuǎn)化,涉及利用橢圓的參數(shù)方程求面積的最值問題,屬綜合中檔題.19、(1),(2)【解析】
(1)當(dāng)時(shí),,與作差可得,即可得到數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,即可求解;對(duì)取自然對(duì)數(shù),則,即是以1為首項(xiàng),以2為公比的等比數(shù)列,即可求解;(2)由(1)可得,再利用錯(cuò)位相減法求解即可.【詳解】解:(1)因?yàn)?,①當(dāng)時(shí),,解得;當(dāng)時(shí),有,②由①②得,,又,所以,即數(shù)列是首項(xiàng)為1,公差為1的等差數(shù)列,故,又因?yàn)?且,取自然對(duì)數(shù)得,所以,又因?yàn)?所以是以1為首項(xiàng),以2為公比的等比數(shù)列,所以,即(2)由(1)知,,所以,③,④③減去④得:,所以【點(diǎn)睛】本題考查由與的關(guān)系求通項(xiàng)公式,考查錯(cuò)位相減法求數(shù)列的和.20、(1)(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 幸福家庭事跡簡(jiǎn)介(17篇)
- 教師網(wǎng)絡(luò)安全培訓(xùn)會(huì)
- 智研咨詢發(fā)布-2024年中國(guó)精密結(jié)構(gòu)件行業(yè)現(xiàn)狀、發(fā)展環(huán)境及投資前景分析報(bào)告
- 技巧與智慧的結(jié)合
- 應(yīng)急預(yù)案中的法律法規(guī)與政策解讀
- 二零二五年度文化娛樂產(chǎn)業(yè)個(gè)人勞務(wù)用工服務(wù)協(xié)議2篇
- 二零二五年度工業(yè)自動(dòng)化設(shè)備承包合同范本集2篇
- 二零二五版消防系統(tǒng)設(shè)備租賃與維修合同
- 二零二五版生態(tài)公園委托物業(yè)管理合同3篇
- 二零二五年度個(gè)人購(gòu)置山地別墅及配套設(shè)施使用協(xié)議3篇
- 老年上消化道出血急診診療專家共識(shí)2024
- 廣東省廣州黃埔區(qū)2023-2024學(xué)年八年級(jí)上學(xué)期期末物理試卷(含答案)
- 2024年國(guó)家保密培訓(xùn)
- 2024年公務(wù)員職務(wù)任命書3篇
- 學(xué)校安全工作計(jì)劃及行事歷
- 《GMP基礎(chǔ)知識(shí)培訓(xùn)》課件
- CFM56-3發(fā)動(dòng)機(jī)構(gòu)造課件
- 會(huì)議讀書交流分享匯報(bào)課件-《殺死一只知更鳥》
- 2025屆撫州市高一上數(shù)學(xué)期末綜合測(cè)試試題含解析
- 貴州茅臺(tái)酒股份有限公司招聘筆試題庫(kù)2024
- 公司印章管理登記使用臺(tái)賬表
評(píng)論
0/150
提交評(píng)論