版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省茂名市名校2023年數學九上期末經典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.如圖,是一個幾何體的三視圖,根據圖中標注的數據可求得這個幾何體的體積為(
)A.12π B.24π C.36π D.48π2.如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=22°,則∠BDC等于A.44° B.60° C.67° D.77°3.如圖,在邊長為1的小正方形網格中,△ABC的三個頂點均在格點上,若向正方形網格中投針,落在△ABC內部的概率是()A. B. C. D.4.下列方程是一元二次方程的是()A.2x2-5x+3 B.2x2-y+1=0 C.x2=0 D.+x=25.已知,二次函數y=ax2+bx+c的圖象上部分點的橫坐標x與縱坐標y的對應值如表格所示,那么它的圖象與x軸的另一個交點坐標是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)6.如圖,在平行四邊形中,點是邊上一點,且,交對角線于點,則等于()A. B. C. D.7.如圖,中,.將繞點順時針旋轉得到,邊與邊交于點(不在上),則的度數為()A. B. C. D.8.已知三角形兩邊長為4和7,第三邊的長是方程的一個根,則第三邊長是()A.5 B.5或11 C.6 D.119.如圖,A、D是⊙O上的兩個點,若∠ADC=33°,則∠ACO的大小為()A.57° B.66° C.67° D.44°10.﹣2的絕對值是()A.2 B. C. D.二、填空題(每小題3分,共24分)11.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.12.若用αn表示正n邊形的中心角,則邊長為4的正十二邊形的中心角是____.13.如圖,O是正方形ABCD邊上一點,以O為圓心,OB為半徑畫圓與AD交于點E,過點E作⊙O的切線交CD于F,將△DEF沿EF對折,點D的對稱點D'恰好落在⊙O上.若AB=6,則OB的長為_____.14.如圖,圓心角都是90°的扇形OAB與扇形OCD疊放在一起,OA=3,OC=1,分別連接AC、BD,則圖中陰影部分的面積為_____.15.如圖,在與中,,要使與相似,還需添加一個條件,這個條件可以是____________(只需填一個條件)16.一組正方形按如圖所示的方式放置,其中頂點在軸上,頂點,,,,,,在軸上,已知正方形的邊長為,,則正方形的邊長為__________________.17.如圖,PA,PB是⊙O的兩條切線,切點分別為A,B,連接OA,OP,AB,設OP與AB相交于點C,若∠APB=60°,OC=2cm,則PC=_________cm.18.如圖,四邊形ABCD內接于⊙O,AB是⊙O的直徑,過點C作⊙O的切線交AB的延長線于點P,若∠P=40°,則∠ADC=____°.三、解答題(共66分)19.(10分)如圖,一次函數y1=k1x+b與反比例函數y1=的圖象交于點A(a,﹣1)和B(1,3),且直線AB交y軸于點C,連接OA、OB.(1)求反比例函數的解析式和點A的坐標;(1)根據圖象直接寫出:當x在什么范圍取值時,y1<y1.20.(6分)某體育老師統計了七年級甲、乙兩個班女生的身高,并繪制了以下不完整的統計圖.請根據圖中信息,解決下列問題:(1)兩個班共有女生多少人?(2)將頻數分布直方圖補充完整;(3)求扇形統計圖中部分所對應的扇形圓心角度數;(4)身高在的5人中,甲班有3人,乙班有2人,現從中隨機抽取兩人補充到學校國旗隊.請用列表法或畫樹狀圖法,求這兩人來自同一班級的概率.21.(6分)某報社為了解市民對“社會主義核心價值觀”的知曉程度,采取隨機抽樣的方式進行問卷調查,調查結果分為“A非常了解”“B了解”“C基本了解”三個等級,并根據調查結果制作了如下圖所示兩幅不完整的統計圖.(1)這次調查的市民人數為,,;(2)補全條形統計圖;(3)若該市約有市民1000000人,請你根據抽樣調查的結果,估計該市大約有多少人對“社會主義核心價值觀”達到“A非常了解”的程度.22.(8分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)23.(8分)如圖,在正方形中,點在邊上,過點作于,且.(1)若,求正方形的周長;(2)若,求正方形的面積.24.(8分)在學校組織的科學素養(yǎng)競賽中,每班參加比賽的人數相同,成績分為、、、四個等級,其中相應等級的得分依次為分,分,分,分.馬老師將九年級一班和二班的成績整理并繪制成如下的統計圖:請你根據以上提供的信息解答下列問題:(1)此次競賽中二班成績在分及其以上的人數是_______人;(2)補全下表中、、的值:平均數(分)中位數(分)眾數(分)方差一班二班(3)學校準備在這兩個班中選一個班參加市級科學素養(yǎng)競賽,你建議學校選哪個班參加?說說你的理由.25.(10分)如圖,點、、都在半徑為的上,過點作交的延長線于點,連接,已知.(1)求證:是的切線;(2)求圖中陰影部分的面積.26.(10分)如圖,一次函數y1=mx+n與反比例函數y2=(x>0)的圖象分別交于點A(a,4)和點B(8,1),與坐標軸分別交于點C和點D.(1)求一次函數與反比例函數的解析式;(2)觀察圖象,當x>0時,直接寫出y1>y2的解集;(3)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】根據三視圖:俯視圖是圓,主視圖與左視圖是長方形可以確定該幾何體是圓柱體,再利用已知數據計算圓柱體的體積.【詳解】先由三視圖確定該幾何體是圓柱體,底面直徑是4,半徑是2,高是1.所以該幾何體的體積為π×22×1=24π.故選B.【點睛】本題主要考查由三視圖確定幾何體和求圓柱體的面積,考查學生的空間想象能力.2、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折疊的性質可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故選C.3、C【分析】先分別求出正方形和三角形的面積,然后根據概率公式即可得出答案.【詳解】正方形的面積=1×4=4三角形的面積=∴落在△ABC內部的概率=故答案選擇C.【點睛】本題考查的是概率的求法,解題的關鍵是用面積之比來代表事件發(fā)生的概率.4、C【解析】一元二次方程必須滿足四個條件:(1)未知數的最高次數是1;(1)二次項系數不為0;(3)是整式方程;(4)含有一個未知數.由這四個條件對四個選項進行驗證,滿足這四個條件者為正確答案.【詳解】A、不是方程,故本選項錯誤;B、方程含有兩個未知數,故本選項錯誤;C、符合一元二次方程的定義,故本選項正確;D、不是整式方程,故本選項錯誤.故選:C.【點睛】本題考查了一元二次方程的概念,判斷一個方程是否是一元二次方程,首先要看是否是整式方程,然后看化簡后是否是只含有一個未知數且未知數的最高次數是1.5、C【分析】根據(0,3)、(3,3)兩點求得對稱軸,再利用對稱性解答即可.【詳解】解:∵拋物線y=ax2+bx+c經過(0,3)、(3,3)兩點,
∴對稱軸x==1.5;
點(-1,0)關于對稱軸對稱點為(4,0),
因此它的圖象與x軸的另一個交點坐標是(4,0).
故選C.【點睛】本題考查拋物線與x軸的交點、二次函數圖象上點的坐標特征,解題的關鍵是明確題意,利用二次函數的性質解答.6、A【分析】根據平行四邊形的性質和相似三角形的性質解答即可.【詳解】解:∵四邊形是平行四邊形,,∴AD∥BC,AD=BC=3ED,∴∠EDB=∠CBD,∠DEF=∠BCF,∴△DFE∽△BFC,∴.故選:A.【點睛】本題考查了平行四邊形的性質和相似三角形的判定和性質,屬于常考題型,熟練掌握相似三角形的判定和性質是解題的關鍵.7、D【分析】根據旋轉的性質可得∠B′=∠B=30°,∠BOB′=52°,再由三角形外角的性質即可求得的度數.【詳解】∵△A′OB′是由△AOB繞點O順時針旋轉得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB繞點O順時針旋轉52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故選D.【點睛】本題主要考查了旋轉的性質,熟知旋轉的性質是解決問題的關鍵.8、A【分析】求出方程的解x1=11,x2=1,分為兩種情況:①當x=11時,此時不符合三角形的三邊關系定理;②當x=1時,此時符合三角形的三邊關系定理,即可得出答案.【詳解】解:x2-16x+11=0,
(x-11)(x-1)=0,
x-11=0,x-1=0,
解得:x1=11,x2=1,
①當x=11時,
∵4+7=11,
∴此時不符合三角形的三邊關系定理,
∴11不是三角形的第三邊;
②當x=1時,三角形的三邊是4、7、1,
∵此時符合三角形的三邊關系定理,
∴第三邊長是1.
故選:A.【點睛】本題考查了解一元二次方程和三角形的三邊關系定理的應用,注意:求出的第三邊的長,一定要看看是否符合三角形的三邊關系定理,即a+b>c,b+c>a,a+c>b,題型較好,但是一道比較容易出錯的題目.9、A【分析】由圓周角定理定理得出∠AOC,再由等腰三角形的性質得到答案.【詳解】解:∵∠AOC與∠ADC分別是弧AC對的圓心角和圓周角,
∴∠AOC=2∠ADC=66°,在△CAO中,AO=CO,∴∠ACO=∠OAC=,故選:A【點睛】本題考查了圓周角定理,此題難度不大,注意在同圓或等圓中,同弧或等弧所對圓周角等于它所對圓心角的一半,注意數形結合思想的應用.10、A【解析】分析:根據數軸上某個數與原點的距離叫做這個數的絕對值的定義,在數軸上,點﹣2到原點的距離是2,所以﹣2的絕對值是2,故選A.二、填空題(每小題3分,共24分)11、【分析】作AB的中點E,連接EM,CE,AD根據三角形中位線的性質和直角三角形斜邊中線等于斜邊一半求出EM和CE長,再根據三角形的三邊關系確定CM長度的范圍,從而確定CM的最小值.【詳解】解:如圖,取AB的中點E,連接CE,ME,AD,∵E是AB的中點,M是BD的中點,AD=2,∴EM為△BAD的中位線,∴,在Rt△ACB中,AC=4,BC=3,由勾股定理得,AB=∵CE為Rt△ACB斜邊的中線,∴,在△CEM中,,即,∴CM的最大值為.故答案為:.【點睛】本題考查了圓的性質,直角三角形的性質及中位線的性質,利用三角形三邊關系確定線段的最值問題,構造一個以CM為邊,另兩邊為定值的的三角形是解答此題的關鍵和難點.12、30o【分析】根據正多邊形的中心角的定義,可得正十二邊形的中心角是:360°÷12=30°.【詳解】正十二邊形的中心角是:360°÷12=30°.故答案為:30o.【點睛】此題考查了正多邊形的中心角.此題比較簡單,注意準確掌握定義是關鍵.13、【解析】連接OE、OD′,作OH⊥ED′于H,通過證得AEO≌△HEO(AAS),AE=EH=ED=2,設OB=OE=x.則AO=6﹣x,根據勾股定理得x2=22+(6﹣x)2,解方程即可求得結論.【詳解】解:連接OE、OD′,作OH⊥ED′于H,∴EH=D′H=ED′∵ED′=ED,∴EH=ED,∵四邊形ABCD是正方形,∴∠A=90°,AB=AD=6,∵EF是⊙O的切線,∴OE⊥EF,∴∠OEH+∠D′EF=90°,∠AEO+∠DEF=90°,∵∠DEF=∠D′EF,∴∠AEO=∠HEO,在△AEO和△HEO中∴△AEO≌△HEO(AAS),∴AE=EH=ED,∴設OB=OE=x.則AO=6﹣x,在Rt△AOE中,x2=22+(6﹣x)2,解得:x=,∴OB=,故答案為:.【點睛】本題是圓的綜合題目,考查了切線的性質和判定、正方形的性質、勾股定理,方程,全等三角形的判定與性質等知識;本題主要考查了圓的切線及全等三角形的判定和性質,關鍵是作出輔助線利用三角形全等證明.14、2π【解析】通過分析圖可知:△ODB經過旋轉90°后能夠和△OCA重合(證全等也可),因此圖中陰影部分的面積=扇形AOB的面積-扇形COD的面積,所以S陰=π×(9-1)=2π.【詳解】由圖可知,將△OAC順時針旋轉90°后可與△ODB重合,∴S△OAC=S△OBD;因此S陰影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案為2π.【點睛】本題中陰影部分的面積可以看作是扇形AOB與扇形COD的面積差,求不規(guī)則的圖形的面積,可以轉化為幾個規(guī)則圖形的面積的和或差來求.15、∠B=∠E【分析】根據兩邊及其夾角法:兩組對應邊的比相等且夾角對應相等的兩個三角形相似可得添加條件:∠B=∠E.【詳解】添加條件:∠B=∠E;
∵,∠B=∠E,
∴△ABC∽△AED,
故答案為:∠B=∠E(答案不唯一).【點睛】此題考查相似三角形的判定,解題關鍵是掌握相似三角形的判定定理.16、【分析】由正方形的邊長為,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根據三角函數的定義和正方形的性質,即可得到答案.【詳解】∵正方形的邊長為,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此類推:正方形的邊長為:,∴正方形的邊長為:.故答案是:.【點睛】本題主要考查正方形的性質和三角函數的定義綜合,掌握用三角函數的定義解直角三角形,是解題的關鍵.17、6【分析】由切線長定理可知PA=PB,由垂徑定理可知OP垂直平分AB,所以OP平分,可得,利用直角三角形30度角的性質可得OA、OP的長,即可.【詳解】解:PA,PB是⊙O的兩條切線,由垂徑定理可知OP垂直平分AB,OP平分,在中,在中,故答案為:6【點睛】本題主要考查了圓的性質與三角形的性質,涉及的知識點主要有切線長定理、垂徑定理、等腰三角形的性質、直角三角形30度角的性質,靈活的將圓與三角形相結合是解題的關鍵.18、115°【分析】根據過C點的切線與AB的延長線交于P點,∠P=40°,可以求得∠OCP和∠OBC的度數,又根據圓內接四邊形對角互補,可以求得∠D的度數,本題得以解決.【詳解】解:連接OC,如右圖所示,
由題意可得,∠OCP=90°,∠P=40°,
∴∠COB=50°,
∵OC=OB,
∴∠OCB=∠OBC=65°,
∵四邊形ABCD是圓內接四邊形,
∴∠D+∠ABC=180°,
∴∠D=115°,
故答案為:115°.【點睛】本題考查切線的性質、圓內接四邊形,解題的關鍵是明確題意,找出所求問題需要的條件.三、解答題(共66分)19、(1)y=,A(﹣3,﹣1);(1)x<﹣3或0<x<1時,y1<y1【分析】(1)把點B的坐標代入y1,利用待定系數法求反比例函數解析式即可,把點A的坐標代入反比例函數解析式進行計算求出a的值,從而得到點A的坐標;(1)根據圖象,寫出一次函數圖象在反比例函數圖象下方的x的取值范圍即可.【詳解】(1)一次函數y1=k1x+b與反比例函數y1的圖象交于點B(1,3),∴3,∴k1=6,∴反比例函數的解析式為y,∵A(a,﹣1)在y的圖象上,∴﹣1,∴a=﹣3,∴點A的坐標為A(﹣3,﹣1);(1)根據圖象得:當x<﹣3或0<x<1時,y1<y1.【點睛】本題考查了反比例函數與一次函數的交點問題,根據點B的坐標求出反比例函數解析式是解答本題的關鍵.20、(1)50;(2)詳見解析;(3);(4)【分析】(1)根據D的人數除以所占的百分比即可的總人數;(2)根據C的百分比乘以總人數,可得C的人數,再根據總人數減去A、B、C、D、F,便可計算的E的人數,分別在直方圖上表示即可.(3)根據直方圖上E的人數比總人數即可求得的E百分比,再計算出圓心角即可.(4)畫樹狀圖統計總數和來自同一班級的情況,再計算概率即可.【詳解】解:(1)總人數為人,答:兩個班共有女生50人;(2)C部分對應的人數為人,部分所對應的人數為;頻數分布直方圖補充如下:(3)扇形統計圖中部分所對應的扇形圓心角度數為;(4)畫樹狀圖:共有20種等可能的結果數,其中這兩人來自同一班級的情況占8種,所以這兩人來自同一班級的概率是.【點睛】本題是一道數據統計的綜合性題目,難度不大,這類題目,往往容易得分,應當熟練的掌握.21、(1)500,12,32;(2)詳見解析;(3)320000【分析】(1)根據B等級的人數及其所占的百分比可求得本次調查的總人數,然后根據C等級的人數可求出其所占的百分比,進而根據各部分所占的百分比之和為1可求出A等級的人數所占的百分比,即可得出m,n的值;
(2)根據(1)中的結果可以求得A等級的人數,從而可以將條形統計圖補充完整;
(3)根據A等級的人數所占的百分比,利用樣本估計總體即“1000000×A等級人數所占的百分比”可得出結果.【詳解】解:(1)本次調查的人數為:280÷56%=500(人),又m%=×100%=12%,∴n%=1-56%-12%=32%.故答案為:500;12;32;
(2)選擇A的學生有:500-280-60=160(人),
補全的條形統計圖,如圖所示:
(3)1000000×32%=320000(人).
答:該市大約有320000人對“社會主義核心價值觀”達到“A非常了解”的程度.【點睛】本題考查條形統計圖、扇形統計圖、用樣本估計總體,解答本題的關鍵是明確題意,讀懂統計圖.22、路燈的高CD的長約為6.1m.【解析】設路燈的高CD為xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴,解得x=6.125≈6.1.∴路燈的高CD約為6.1m.23、(1);(2).【分析】(1)利用AA定理證明,從而得到,設,分別用含x的式子表示出AB,BE,ED,代入比例式,求出x的值,從而求正方形周長;(2)在上取一點,使,連接,利用等腰直角三角形的性質求得,,,然后利用勾股定理求得,從而求解正方形面積.【詳解】解:(1)∵四邊形是正方形,∴.∵,∴.∴.∵,∴.∴.設.∵,∴.∴.∴,∴,即.∴正方形的周長為.(2)如圖,在上取一點,使,連接.∵,,∴.又因為∠ABD=∠ADB=45°∴.∴.在中,,∴.∴.在中,.∴正方形的面積.【點睛】本題考查相似三角形的判定和性質,正方形的性質,等腰直角三角形的判定和性質以及勾股定理的應用,添加輔助線構造等腰直角三角形是本題的解題關鍵.24、(1);(2);;;(3)見解析.【分析】(1)根據條形統計圖得到參賽人數,然后根據扇形統計圖求得C級的百分率,即可求出成績在80分及以上的人數;(2)由上題中求得的總人數分別求出各個成績段的人數,然后可以求得平均數、中位數、眾數;(3)根據數據波動大小來選擇.【詳解】(1)由條形統計圖知,參加競賽的人數為:(人),此次競賽中二班成績在分的百分率為:,∴此次競賽中二班成績在分及其以上的人數是:(人),故答案為:;(2)二班成績分別為:100分的有(人),90分的有(人),80分的有(人),70分的有(人),(分),∵一班成績的中位數在第位上,∴一班成績的中位數是:(分),∵二班成績中100分的人數最多達到11個,∴二班成績的眾數為:故答案為:,,(3)選一班參加市級科學素養(yǎng)競賽,因為一班方差較小,比較穩(wěn)定.【點睛】本題考查了平均數、中位數、眾數、方差的意義以及各種統計圖之間的相互轉化的知識,在關鍵是根據題目提供的信息得到相應的解決下一題的信息,考查了學生們加工信息的能力.25、(1)證明見解析;(2)6π.【分析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年冀教版八年級歷史上冊月考試卷含答案
- 2025年度歐盟電子商務政策實施細則合同4篇
- 房屋遺產繼承合同(2篇)
- 擔保合同責任協議書(2篇)
- 2025年度木跳板租賃與售后服務采購合同規(guī)范3篇
- 二零二五版摩托車零部件質量檢測與認證合同4篇
- 2025年個人創(chuàng)業(yè)風險投資合同范本4篇
- 2025年度個人與企業(yè)合租創(chuàng)意工作室合同3篇
- 二零二五年度苗木種植基地信息化建設合同4篇
- 2025年度鋼材原材料采購質量保證合同
- 2025水利云播五大員考試題庫(含答案)
- 老年髖部骨折患者圍術期下肢深靜脈血栓基礎預防專家共識(2024版)解讀
- 中藥飲片驗收培訓
- 手術室??谱o士工作總結匯報
- DB34T 1831-2013 油菜收獲與秸稈粉碎機械化聯合作業(yè)技術規(guī)范
- 蘇州市2025屆高三期初陽光調研(零模)政治試卷(含答案)
- 創(chuàng)傷處理理論知識考核試題及答案
- (正式版)HG∕T 21633-2024 玻璃鋼管和管件選用規(guī)定
- 《義務教育數學課程標準(2022年版)》測試題+答案
- 殘疾軍人新退休政策
- 《鐵路超限超重貨物運輸規(guī)則》(2016)260
評論
0/150
提交評論