




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江蘇省徐州侯集高級(jí)中學(xué)2024年高考仿真卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),為圖象的對(duì)稱(chēng)中心,若圖象上相鄰兩個(gè)極值點(diǎn),滿足,則下列區(qū)間中存在極值點(diǎn)的是()A. B. C. D.2.趙爽是我國(guó)古代數(shù)學(xué)家、天文學(xué)家,大約在公元222年,趙爽為《周髀算經(jīng)》一書(shū)作序時(shí),介紹了“勾股圓方圖”,亦稱(chēng)“趙爽弦圖”(以弦為邊長(zhǎng)得到的正方形是由4個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的).類(lèi)比“趙爽弦圖”.可類(lèi)似地構(gòu)造如下圖所示的圖形,它是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成一個(gè)大等邊三角形.設(shè),若在大等邊三角形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小等邊三角形(陰影部分)的概率是()A. B. C. D.3.?dāng)?shù)列滿足:,,,為其前n項(xiàng)和,則()A.0 B.1 C.3 D.44.已知是函數(shù)的極大值點(diǎn),則的取值范圍是A. B.C. D.5.若函數(shù)有兩個(gè)極值點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知函數(shù),則不等式的解集為()A. B. C. D.7.命題:存在實(shí)數(shù),對(duì)任意實(shí)數(shù),使得恒成立;:,為奇函數(shù),則下列命題是真命題的是()A. B. C. D.8.已知,函數(shù),若函數(shù)恰有三個(gè)零點(diǎn),則()A. B.C. D.9.已知,則的大小關(guān)系是()A. B. C. D.10.在中,角的對(duì)邊分別為,若.則角的大小為()A. B. C. D.11.在平面直角坐標(biāo)系中,銳角頂點(diǎn)在坐標(biāo)原點(diǎn),始邊為x軸正半軸,終邊與單位圓交于點(diǎn),則()A. B. C. D.12.在平面直角坐標(biāo)系中,將點(diǎn)繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)到點(diǎn),設(shè)直線與軸正半軸所成的最小正角為,則等于()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè),則“”是“”的__________條件.14.記為數(shù)列的前項(xiàng)和,若,則__________.15.如圖是由3個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,設(shè),,則的面積為_(kāi)_______.16.若點(diǎn)在直線上,則的值等于______________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,平面分別是上的動(dòng)點(diǎn),且.(1)若平面與平面的交線為,求證:;(2)當(dāng)平面平面時(shí),求平面與平面所成的二面角的余弦值.18.(12分)如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點(diǎn).(1)證明:AP∥平面EBD;(2)證明:BE⊥PC.19.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.20.(12分)在中,角A、B、C的對(duì)邊分別為a、b、c,且.(1)求角A的大小;(2)若,的平分線與交于點(diǎn)D,與的外接圓交于點(diǎn)E(異于點(diǎn)A),,求的值.21.(12分)已知數(shù)列滿足.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,證明:.22.(10分)在中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且滿足.(1)求B;(2)若,AD為BC邊上的中線,當(dāng)?shù)拿娣e取得最大值時(shí),求AD的長(zhǎng).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
結(jié)合已知可知,可求,進(jìn)而可求,代入,結(jié)合,可求,即可判斷.【詳解】圖象上相鄰兩個(gè)極值點(diǎn),滿足,即,,,且,,,,,,當(dāng)時(shí),為函數(shù)的一個(gè)極小值點(diǎn),而.故選:.【點(diǎn)睛】本題主要考查了正弦函數(shù)的圖象及性質(zhì)的簡(jiǎn)單應(yīng)用,解題的關(guān)鍵是性質(zhì)的靈活應(yīng)用.2、A【解析】
根據(jù)幾何概率計(jì)算公式,求出中間小三角形區(qū)域的面積與大三角形面積的比值即可.【詳解】在中,,,,由余弦定理,得,所以.所以所求概率為.故選A.【點(diǎn)睛】本題考查了幾何概型的概率計(jì)算問(wèn)題,是基礎(chǔ)題.3、D【解析】
用去換中的n,得,相加即可找到數(shù)列的周期,再利用計(jì)算.【詳解】由已知,①,所以②,①+②,得,從而,數(shù)列是以6為周期的周期數(shù)列,且前6項(xiàng)分別為1,2,1,-1,-2,-1,所以,.故選:D.【點(diǎn)睛】本題考查周期數(shù)列的應(yīng)用,在求時(shí),先算出一個(gè)周期的和即,再將表示成即可,本題是一道中檔題.4、B【解析】
方法一:令,則,,當(dāng),時(shí),,單調(diào)遞減,∴時(shí),,,且,∴,即在上單調(diào)遞增,時(shí),,,且,∴,即在上單調(diào)遞減,∴是函數(shù)的極大值點(diǎn),∴滿足題意;當(dāng)時(shí),存在使得,即,又在上單調(diào)遞減,∴時(shí),,所以,這與是函數(shù)的極大值點(diǎn)矛盾.綜上,.故選B.方法二:依據(jù)極值的定義,要使是函數(shù)的極大值點(diǎn),須在的左側(cè)附近,,即;在的右側(cè)附近,,即.易知,時(shí),與相切于原點(diǎn),所以根據(jù)與的圖象關(guān)系,可得,故選B.5、A【解析】試題分析:由題意得有兩個(gè)不相等的實(shí)數(shù)根,所以必有解,則,且,∴.考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)極值點(diǎn)【方法點(diǎn)睛】函數(shù)極值問(wèn)題的常見(jiàn)類(lèi)型及解題策略(1)知圖判斷函數(shù)極值的情況.先找導(dǎo)數(shù)為0的點(diǎn),再判斷導(dǎo)數(shù)為0的點(diǎn)的左、右兩側(cè)的導(dǎo)數(shù)符號(hào).(2)已知函數(shù)求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗(yàn)f′(x)在f′(x)=0的根的附近兩側(cè)的符號(hào)―→下結(jié)論.(3)已知極值求參數(shù).若函數(shù)f(x)在點(diǎn)(x0,y0)處取得極值,則f′(x0)=0,且在該點(diǎn)左、右兩側(cè)的導(dǎo)數(shù)值符號(hào)相反.6、D【解析】
先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域?yàn)?因?yàn)?,所以為上的偶函?shù),因?yàn)楹瘮?shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因?yàn)?,所以,且,解?故選:D【點(diǎn)睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.7、A【解析】
分別判斷命題和的真假性,然后根據(jù)含有邏輯聯(lián)結(jié)詞命題的真假性判斷出正確選項(xiàng).【詳解】對(duì)于命題,由于,所以命題為真命題.對(duì)于命題,由于,由解得,且,所以是奇函數(shù),故為真命題.所以為真命題.、、都是假命題.故選:A【點(diǎn)睛】本小題主要考查誘導(dǎo)公式,考查函數(shù)的奇偶性,考查含有邏輯聯(lián)結(jié)詞命題真假性的判斷,屬于基礎(chǔ)題.8、C【解析】
當(dāng)時(shí),最多一個(gè)零點(diǎn);當(dāng)時(shí),,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)單調(diào)性畫(huà)函數(shù)草圖,根據(jù)草圖可得.【詳解】當(dāng)時(shí),,得;最多一個(gè)零點(diǎn);當(dāng)時(shí),,,當(dāng),即時(shí),,在,上遞增,最多一個(gè)零點(diǎn).不合題意;當(dāng),即時(shí),令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個(gè)零點(diǎn);根據(jù)題意函數(shù)恰有3個(gè)零點(diǎn)函數(shù)在上有一個(gè)零點(diǎn),在,上有2個(gè)零點(diǎn),如圖:且,解得,,.故選.【點(diǎn)睛】遇到此類(lèi)問(wèn)題,不少考生會(huì)一籌莫展.由于方程中涉及兩個(gè)參數(shù),故按“一元化”想法,逐步分類(lèi)討論,這一過(guò)程中有可能分類(lèi)不全面、不徹底.9、B【解析】
利用函數(shù)與函數(shù)互為反函數(shù),可得,再利用對(duì)數(shù)運(yùn)算性質(zhì)比較a,c進(jìn)而可得結(jié)論.【詳解】依題意,函數(shù)與函數(shù)關(guān)于直線對(duì)稱(chēng),則,即,又,所以,.故選:B.【點(diǎn)睛】本題主要考查對(duì)數(shù)、指數(shù)的大小比較,屬于基礎(chǔ)題.10、A【解析】
由正弦定理化簡(jiǎn)已知等式可得,結(jié)合,可得,結(jié)合范圍,可得,可得,即可得解的值.【詳解】解:∵,∴由正弦定理可得:,∵,∴,∵,,∴,∴.故選A.【點(diǎn)睛】本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.11、A【解析】
根據(jù)單位圓以及角度范圍,可得,然后根據(jù)三角函數(shù)定義,可得,最后根據(jù)兩角和的正弦公式,二倍角公式,簡(jiǎn)單計(jì)算,可得結(jié)果.【詳解】由題可知:,又為銳角所以,根據(jù)三角函數(shù)的定義:所以由所以故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義以及兩角和正弦公式,還考查二倍角的正弦、余弦公式,難點(diǎn)在于公式的計(jì)算,識(shí)記公式,簡(jiǎn)單計(jì)算,屬基礎(chǔ)題.12、A【解析】
設(shè)直線直線與軸正半軸所成的最小正角為,由任意角的三角函數(shù)的定義可以求得的值,依題有,則,利用誘導(dǎo)公式即可得到答案.【詳解】如圖,設(shè)直線直線與軸正半軸所成的最小正角為因?yàn)辄c(diǎn)在角的終邊上,所以依題有,則,所以,故選:A【點(diǎn)睛】本題考查三角函數(shù)的定義及誘導(dǎo)公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、充分必要【解析】
根據(jù)充分條件和必要條件的定義可判斷兩者之間的條件關(guān)系.【詳解】當(dāng)時(shí),有,故“”是“”的充分條件.當(dāng)時(shí),有,故“”是“”的必要條件.故“”是“”的充分必要條件,故答案為:充分必要.【點(diǎn)睛】本題考查充分必要條件的判斷,可利用定義來(lái)判斷,也可以根據(jù)兩個(gè)條件構(gòu)成命題及逆命題的真假來(lái)判斷,還可以利用兩個(gè)條件對(duì)應(yīng)的集合的包含關(guān)系來(lái)判斷,本題屬于容易題.14、-254【解析】
利用代入即可得到,即是等比數(shù)列,再利用等比數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項(xiàng),2為公比的等比數(shù)列,所以,即,所以。故答案為:【點(diǎn)睛】本題考查已知與的關(guān)系求,考查學(xué)生的數(shù)學(xué)運(yùn)算求解能力,是一道中檔題.15、【解析】
根據(jù)個(gè)全等的三角形,得到,設(shè),求得,利用余弦定理求得,再利用三角形的面積公式,求得三角形的面積.【詳解】由于三角形是由個(gè)全等的三角形與中間的一個(gè)小等邊三角形拼成的一個(gè)大等邊三角形,所以.在三角形中,.設(shè),則.由余弦定理得,解得.所以三角形邊長(zhǎng)為,面積為.故答案為:【點(diǎn)睛】本題考查了等邊三角形的面積計(jì)算公式、余弦定理、全等三角形的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.16、【解析】
根據(jù)題意可得,再由,即可得到結(jié)論.【詳解】由題意,得,又,解得,當(dāng)時(shí),則,此時(shí);當(dāng)時(shí),則,此時(shí),綜上,.故答案為:.【點(diǎn)睛】本題考查誘導(dǎo)公式和同角的三角函數(shù)的關(guān)系,考查計(jì)算能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)見(jiàn)解析;(2)【解析】
(1)首先由線面平行的判定定理可得平面,再由線面平行的性質(zhì)定理即可得證;(2)以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,利用空間向量法求出二面角的余弦值;【詳解】解:(1)由,又平面,平面,所以平面.又平面,且平面平面,故.(2)因?yàn)槠矫?,所以,又,所以平面,所以,又,所?若平面平面,則平面,所以,由且,又,所以.以點(diǎn)為坐標(biāo)原點(diǎn),,所在的直線分別為軸,以過(guò)點(diǎn)且垂直于的直線為軸建立空間直角坐標(biāo)系,則,,設(shè)則由,可得,,即,所以可得,所以,設(shè)平面的一個(gè)法向量為,則,,,取,得所以易知平面的法向量為,設(shè)平面與平面所成的二面角為,則,結(jié)合圖形可知平面與平面所成的二面角的余弦值為.【點(diǎn)睛】本題考查線面平行的判定定理及性質(zhì)定理的應(yīng)用,利用空間向量法求二面角,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng),屬于中檔題.18、(1)見(jiàn)解析(2)見(jiàn)解析【解析】
(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE,利用三角形中位線可得AP∥OE,從而可證AP∥平面EBD;(2)先證明BD⊥平面PCD,再證明PC⊥平面BDE,從而可證BE⊥PC.【詳解】證明:(1)連結(jié)AC交BD于點(diǎn)O,連結(jié)OE因?yàn)樗倪呅蜛BCD為平行四邊形∴O為AC中點(diǎn),又E為PC中點(diǎn),故AP∥OE,又AP平面EBD,OE平面EBD所以AP∥平面EBD
;(2)∵△PCD為正三角形,E為PC中點(diǎn)所以PC⊥DE因?yàn)槠矫鍼CD⊥平面ABCD,平面PCD平面ABCD=CD,又BD平面ABCD,BD⊥CD∴BD⊥平面PCD又PC平面PCD,故PC⊥BD又BDDE=D,BD平面BDE,DE平面BDE故PC⊥平面BDE又BE平面BDE,所以BE⊥PC.【點(diǎn)睛】本題主要考查空間位置關(guān)系的證明,線面平行一般轉(zhuǎn)化為線線平行來(lái)證明,直線與直線垂直通常利用線面垂直來(lái)進(jìn)行證明,側(cè)重考查邏輯推理的核心素養(yǎng).19、(1)見(jiàn)解析;(2)【解析】
(1)由折疊過(guò)程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【點(diǎn)睛】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度租賃挖機(jī)設(shè)備租賃合同解除條件協(xié)議
- 二零二五年度股東退股與股權(quán)轉(zhuǎn)讓合同
- 2025年度藝術(shù)培訓(xùn)學(xué)校家長(zhǎng)子女培訓(xùn)責(zé)任承諾書(shū)
- 2025年度汽車(chē)銷(xiāo)售營(yíng)業(yè)執(zhí)照及售后服務(wù)權(quán)轉(zhuǎn)讓合同
- 二零二五年度地方特色酒店餐飲加盟協(xié)議
- 二零二五年度酒店餐飲投資入股合同
- 二零二五年度按摩店合伙人培訓(xùn)體系與人才儲(chǔ)備協(xié)議
- 二零二五年度人工智能領(lǐng)域?qū)<艺衅概c合作開(kāi)發(fā)合同
- 小班離園安全案例分享
- 二零二五年度街道辦事處社區(qū)工作者社區(qū)交通秩序維護(hù)聘用合同
- 房地產(chǎn)-保租房REITs2024年度綜述:穩(wěn)立潮頭跨越周期
- 2025年湖北省技能高考(建筑技術(shù)類(lèi))《建筑制圖與識(shí)圖》模擬練習(xí)試題庫(kù)(含答案)
- 2025國(guó)家電網(wǎng)公司(第二批)招聘陜西省電力公司高頻重點(diǎn)模擬試卷提升(共500題附帶答案詳解)
- 2025年江蘇連云港瑞馳投資有限公司招聘筆試參考題庫(kù)含答案解析
- 二零二四年度嬰幼兒奶粉電商平臺(tái)銷(xiāo)售合作協(xié)議2篇
- 房地產(chǎn)市場(chǎng)報(bào)告 -2024年第四季度大連寫(xiě)字樓和零售物業(yè)市場(chǎng)報(bào)告
- 簡(jiǎn)單的路線圖(說(shuō)課稿)2024-2025學(xué)年三年級(jí)上冊(cè)數(shù)學(xué)西師大版
- Unit 5 Now and Then-Lesson 3 First-Time Experiences 說(shuō)課稿 2024-2025學(xué)年北師大版(2024)七年級(jí)英語(yǔ)下冊(cè)
- 《中國(guó)心力衰竭診斷和治療指南2024》解讀
- 2025中國(guó)人民保險(xiǎn)集團(tuán)校園招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- 中國(guó)食物成分表2020年權(quán)威完整改進(jìn)版
評(píng)論
0/150
提交評(píng)論