湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題含解析_第1頁
湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題含解析_第2頁
湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題含解析_第3頁
湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題含解析_第4頁
湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省武漢江夏區(qū)五校聯(lián)考2023年數(shù)學九上期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如果2a=5b,那么下列比例式中正確的是()A. B. C. D.2.如圖,矩形ABCD中,E為DC的中點,AD:AB=:2,CP:BP=1:2,連接EP并延長,交AB的延長線于點F,AP、BE相交于點O.下列結(jié)論:①EP平分∠CEB;②=PB?EF;③PF?EF=2;④EF?EP=4AO?PO.其中正確的是()A.①②③ B.①②④ C.①③④ D.③④3.下列是世界各國銀行的圖標,其中不是軸對稱圖形的是()A. B. C. D.4.下列4×4的正方形網(wǎng)格中,小正方形的邊長均為1,三角形的頂點都在格點上,則與△ABC相似的三角形所在的網(wǎng)格圖形是()A.B.C.D.5.如圖,在△ABC中,∠A=45°,∠C=90°,點D在線段AC上,∠BDC=60°,AD=1,則BD等于()A. B.+1 C.-1 D.6.已知關(guān)于x的方程x2﹣3x+2k=0有兩個不相等的實數(shù)根,則k的取值范圍是()A.k> B.k< C.k<﹣ D.k<7.用配方法解方程x2﹣2x﹣5=0時,原方程應(yīng)變形為()A.(x+1)2=6 B.(x+2)2=9 C.(x﹣1)2=6 D.(x﹣2)2=98.劉徽是我國古代一位偉大的數(shù)學家,他的杰作《九章算術(shù)注》和《海寶算經(jīng)》是中國寶貴的文化遺產(chǎn).他所提出的割圓術(shù)可以估算圓周率.割圓術(shù)是依次用圓內(nèi)接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內(nèi)接正十二邊形面積為()A.1 B.3 C.3.1 D.3.149.若二次函數(shù)的圖象的頂點在第一象限,且經(jīng)過點(0,1)和(-1,0),則的值的變化范圍是()A. B. C. D.10.點到軸的距離是()A. B. C. D.11.方程變?yōu)榈男问?,正確的是()A. B.C. D.12.如圖,直線l與x軸,y軸分別交于A,B兩點,且與反比例函數(shù)y=(x>0)的圖象交于點C,若S△AOB=S△BOC=1,則k=()A.1 B.2 C.3 D.4二、填空題(每題4分,共24分)13.一個盒子裝有除顏色外其它均相同的2個紅球和3個白球,現(xiàn)從中任取2個球,則取到的是一個紅球、一個白球的概率為_____.14.如圖,菱形ABCD中,∠B=120°,AB=2,將圖中的菱形ABCD繞點A沿逆時針方向旋轉(zhuǎn),得菱形AB′C′D′1,若∠BAD′=110°,在旋轉(zhuǎn)的過程中,點C經(jīng)過的路線長為____.15.進價為元/件的商品,當售價為元/件時,每天可銷售件,售價每漲元,每天少銷售件,當售價為________元時每天銷售該商品獲得利潤最大,最大利潤是________元.16.函數(shù)中,自變量的取值范圍是_____.17.如圖,在Rt△ABC中,∠ACB=90°,CB=4,以點C為圓心,CB的長為半徑畫弧,與AB邊交于點D,將繞點D旋轉(zhuǎn)180°后點B與點A恰好重合,則圖中陰影部分的面積為_____.18.若點P(2a+3b,﹣2)關(guān)于原點的對稱點為Q(3,a﹣2b),則(3a+b)2020=______.三、解答題(共78分)19.(8分)如圖,已知直線y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(1,4)、B(4,1)兩點,與x軸交于C點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)根據(jù)圖象直接回答:在第一象限內(nèi),當x取何值時,一次函數(shù)值大于反比例函數(shù)值?(3)點P是y=(x>0)圖象上的一個動點,作PQ⊥x軸于Q點,連接PC,當S△CPQ=S△CAO時,求點P的坐標.20.(8分)如圖,在平面直角坐標系xOy中,A(﹣2,0),B(0,3),C(﹣4,1).以原點O為旋轉(zhuǎn)中心,將△ABC順時針旋轉(zhuǎn)90°得到△A'B'C',其中點A,B,C旋轉(zhuǎn)后的對應(yīng)點分別為點A',B',C'.(1)畫出△A'B'C',并寫出點A',B',C'的坐標;(2)求經(jīng)過點B',B,A三點的拋物線對應(yīng)的函數(shù)解析式.21.(8分)如圖,以40m/s的速度將小球沿與地面30°角的方向擊出時,小球的飛行路線是一段拋物線.如果不考慮空氣阻力,小球的飛行高度h(單位:m)與飛行時間t(單位:s)之間的函數(shù)關(guān)系式為h=20t-(t≥0).回答問題:(1)小球的飛行高度能否達到19.5m;(2)小球從最高點到落地需要多少時間?22.(10分)如圖,直徑為AB的⊙O交的兩條直角邊BC,CD于點E,F(xiàn),且,連接BF.(1)求證CD為⊙O的切線;(2)當CF=1且∠D=30°時,求⊙O的半徑.23.(10分)如圖,AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使DC=BD,連接AC,E為AC上一點,直線ED與AB延長線交于點F,若∠CDE=∠DAC,AC=1.(1)求⊙O半徑;(2)求證:DE為⊙O的切線;24.(10分)如圖,矩形ABCD的對角線AC、BD交于點O,∠AOD=60°,AB=,AE⊥BD于點E,求OE的長.25.(12分)在平面直角坐標系中,點到直線的距離即為點到直線的垂線段的長.(1)如圖1,取點M(1,0),則點M到直線l:y=x﹣1的距離為多少?(2)如圖2,點P是反比例函數(shù)y=在第一象限上的一個點,過點P分別作PM⊥x軸,作PN⊥y軸,記P到直線MN的距離為d0,問是否存在點P,使d0=?若存在,求出點P的坐標,若不存在,請說明理由.(3)如圖3,若直線y=kx+m與拋物線y=x2﹣4x相交于x軸上方兩點A、B(A在B的左邊).且∠AOB=90°,求點P(2,0)到直線y=kx+m的距離最大時,直線y=kx+m的解析式.26.如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點測得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點沿水平方向前進6米到達點D,測得吊燈底端B的仰角為.請根據(jù)以上數(shù)據(jù)求出吊燈AB的長度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73)

參考答案一、選擇題(每題4分,共48分)1、C【分析】由2a=5b,根據(jù)比例的性質(zhì),即可求得答案.【詳解】∵2a=5b,∴或.故選:C.【點睛】此題主要考查比例的性質(zhì),解題的關(guān)鍵是熟知等式與分式的性質(zhì).2、B【解析】由條件設(shè)AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函數(shù)值可以求出∠EBC的度數(shù)和∠CEP的度數(shù),則∠CEP=∠BEP,運用勾股定理及三角函數(shù)值就可以求出就可以求出BF、EF的值,從而可以求出結(jié)論.【詳解】解:設(shè)AD=x,AB=2x∵四邊形ABCD是矩形∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB∴BC=x,CD=2x∵CP:BP=1:2∴CP=x,BP=x∵E為DC的中點,∴CE=CD=x,∴tan∠CEP==,tan∠EBC==∴∠CEP=30°,∠EBC=30°∴∠CEB=60°∴∠PEB=30°∴∠CEP=∠PEB∴EP平分∠CEB,故①正確;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴∴BE·BF=EF·BP∵∠F=∠BEF,∴BE=BF∴=PB·EF,故②正確∵∠F=30°,∴PF=2PB=x,過點E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x∴PF·EF=x·2x=8x22AD2=2×(x)2=6x2,∴PF·EF≠2AD2,故③錯誤.在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x∵tan∠PAB==∴∠PAB=30°∴∠APB=60°∴∠AOB=90°在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x∴4AO·PO=4×x·x=4x2又EF·EP=2x·x=4x2∴EF·EP=4AO·PO.故④正確.故選,B【點睛】本題考查了矩形的性質(zhì)的運用,相似三角形的判定及性質(zhì)的運用,特殊角的正切值的運用,勾股定理的運用及直角三角形的性質(zhì)的運用,解答時根據(jù)比例關(guān)系設(shè)出未知數(shù)表示出線段的長度是關(guān)鍵.3、D【解析】本題考查的是軸對稱圖形的定義.把圖形沿某條直線折疊直線兩旁的部分能夠重合的圖形叫軸對稱圖形.A、B、C都可以,而D不行,所以D選項正確.4、B【解析】根據(jù)勾股定理,AB==2,BC==,AC==,所以△ABC的三邊之比為:2:=1:2:,A、三角形的三邊分別為2,=,=3,三邊之比為2::3=::3,故本選項錯誤;B、三角形的三邊分別為2,4,=2,三邊之比為2:4:2=1:2:,故本選項正確;C、三角形的三邊分別為2,3,=,三邊之比為2:3:,故本選項錯誤;D、三角形的三邊分別為=,=,4,三邊之比為::4,故本選項錯誤.故選B.5、B【分析】設(shè)BC=x,根據(jù)銳角三角函數(shù)分別用x表示出AC和CD,然后利用AC-CD=AD列方程即可求出BC,再根據(jù)銳角三角函數(shù)即可求出BD.【詳解】解:設(shè)BC=x∵在△ABC中,∠A=45°,∠C=90°,∴AC=BC=x在Rt△BCD中,CD=∵AC-CD=AD,AD=1∴解得:即BC=在Rt△BCD中,BD=故選:B.【點睛】此題考查的是解直角三角形的應(yīng)用,掌握用銳角三角函數(shù)解直角三角形是解決此題的關(guān)鍵.6、B【分析】利用判別式的意義得到△=(﹣3)2﹣4?2k>0,然后解不等式即可.【詳解】解:根據(jù)題意得△=(﹣3)2﹣4?2k>0,解得k<.故選:B.【點睛】此題主要考查一元二次方程的根的情況,解題的關(guān)鍵是熟知根的判別式.7、C【分析】配方法的一般步驟:(1)把常數(shù)項移到等號的右邊;(2)把二次項的系數(shù)化為1;(3)等式兩邊同時加上一次項系數(shù)一半的平方.【詳解】解:由原方程移項,得x2﹣2x=5,方程的兩邊同時加上一次項系數(shù)﹣2的一半的平方1,得x2﹣2x+1=1∴(x﹣1)2=1.故選:C.【點睛】此題考查利用配方法將一元二次方程變形,熟練掌握配方法的一般步驟是解題的關(guān)鍵.8、B【分析】根據(jù)直角三角形的30度角的性質(zhì)以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內(nèi)接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內(nèi)接正十二邊形的面積S=12××1×=3.故選B.【點睛】此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,屬于中考??碱}型.9、A【分析】代入兩點的坐標可得,,所以,由拋物線的頂點在第一象限可得且,可得,再根據(jù)、,可得S的變化范圍.【詳解】將點(0,1)代入中可得將點(-1,0)代入中可得∴∵二次函數(shù)圖象的頂點在第一象限∴對稱軸且∴∵,∴∴故答案為:A.【點睛】本題考查了二次函數(shù)的系數(shù)問題,掌握二次函數(shù)的性質(zhì)以及各系數(shù)間的關(guān)系是解題的關(guān)鍵.10、C【分析】根據(jù)點的坐標的性質(zhì)即可得.【詳解】由點的坐標的性質(zhì)得,點P到x軸的距離為點P的縱坐標的絕對值則點到軸的距離是故選:C.【點睛】本題考查了點的坐標的性質(zhì),掌握理解點的坐標的性質(zhì)是解題關(guān)鍵.11、B【分析】方程常數(shù)項移到右邊,兩邊加上1變形即可得到結(jié)果.【詳解】方程移項得:x2﹣2x=3,配方得:x2﹣2x+1=1,即(x﹣1)2=1.故選B.【點睛】本題考查了解一元二次方程﹣配方法,熟練掌握配方法的步驟是解答本題的關(guān)鍵.12、D【分析】作CD⊥x軸于D,設(shè)OB=a(a>0).由S△AOB=S△BOC,根據(jù)三角形的面積公式得出AB=BC.根據(jù)相似三角形性質(zhì)即可表示出點C的坐標,把點C坐標代入反比例函數(shù)即可求得k.【詳解】如圖,作CD⊥x軸于D,設(shè)OB=a(a>0).∵S△AOB=S△BOC,∴AB=BC.∵△AOB的面積為1,∴OA?OB=1,∴OA=,∵CD∥OB,AB=BC,∴OD=OA=,CD=2OB=2a,∴C(,2a),∵反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,∴k=×2a=1.故選D.【點睛】此題考查反比例函數(shù)與一次函數(shù)的交點問題,待定系數(shù)法求函數(shù)解析式,會運用相似求線段長度是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、【解析】試題解析:畫樹狀圖得:∵共有20種等可能的結(jié)果,取到的是一個紅球、一個白球的有12種情況,∴取到的是一個紅球、一個白球的概率為:故答案為14、π.【分析】連接AC、AC′,作BM⊥AC于M,由菱形的性質(zhì)得出∠BAC=∠D′AC′=30°,由含30°角的直角三角形的性質(zhì)得出BM=AB=1,由勾股定理求出AM=BM=,得出AC=2AM=2,求出∠CAC′=50°,再由弧長公式即可得出結(jié)果.【詳解】解:連接AC、AC′,作BM⊥AC于M,如圖所示:∵四邊形ABCD是菱形,∠B=120°,∴∠BAC=∠D′AC′=30°,∴BM=AB=1,∴AM=BM=,∴AC=2AM=2,∵∠BAD′=110°,∴∠CAC′=110°-30°-30°=50°,∴點C經(jīng)過的路線長==π故答案為:π【點睛】本題考查了菱形的性質(zhì)、含30°角的直角三角形的性質(zhì)、等腰三角形的性質(zhì)、勾股定理、弧長公式;熟練掌握菱形的性質(zhì),由勾股定理和等腰三角形的性質(zhì)求出AC的長是解決問題的關(guān)鍵.15、55,3.【解析】試題分析:設(shè)售價為元,總利潤為元,則,∴時,獲得最大利潤為3元.故答案為55,3.考點:3.二次函數(shù)的性質(zhì);3.二次函數(shù)的應(yīng)用.16、【分析】根據(jù)被開方式是非負數(shù)列式求解即可.【詳解】依題意,得,解得:,故答案為.【點睛】本題考查了函數(shù)自變量的取值范圍,函數(shù)有意義時字母的取值范圍一般從幾個方面考慮:①當函數(shù)解析式是整式時,字母可取全體實數(shù);②當函數(shù)解析式是分式時,考慮分式的分母不能為0;③當函數(shù)解析式是二次根式時,被開方數(shù)為非負數(shù).④對于實際問題中的函數(shù)關(guān)系式,自變量的取值除必須使表達式有意義外,還要保證實際問題有意義.17、.【分析】根據(jù)題意,用的面積減去扇形的面積,即為所求.【詳解】由題意可得,AB=2BC,∠ACB=90°,弓形BD與弓形AD完全一樣,則∠A=30°,∠B=∠BCD=60°,∵CB=4,∴AB=8,AC=4,∴陰影部分的面積為:=,故答案為:.【點睛】本題考查不規(guī)則圖形面積的求法,屬中檔題.18、1【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出3a+b=﹣1,進而得出答案.【詳解】解:∵點P(2a+3b,﹣2)關(guān)于原點的對稱點為Q(3,a﹣2b),∴,故3a+b=﹣1,則(3a+b)2020=1.故答案為:1.【點睛】此題主要考查了關(guān)于原點對稱點的性質(zhì),正確記憶橫縱坐標的符號關(guān)系是解題關(guān)鍵.三、解答題(共78分)19、(1)y=﹣x+1;(2)當1<x<4時,一次函數(shù)值大于反比例函數(shù)值;(3)【分析】(1)根據(jù)待定系數(shù)法求得即可;(2)由兩個函數(shù)圖象即可得出答案;(3)設(shè)P(m,),先求得△AOC的面積,即可求得△CPQ的面積,根據(jù)面積公式即可得到|1﹣m|?=1,解得即可.【詳解】解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函數(shù)為y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函數(shù)為y=﹣x+1.(2)根據(jù)圖象得:當1<x<4時,一次函數(shù)值大于反比例函數(shù)值;(3)設(shè)P(m,),由一次函數(shù)y=﹣x+1可知C(1,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=1,∴|1﹣m|?=1,解得m=或m=﹣(舍去),∴P(,).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、反比例函數(shù)圖象上點的坐標特征、待定系數(shù)法求一次函數(shù)的解析式,熟練掌握待定系數(shù)法求函數(shù)解析式是解決問題的關(guān)鍵.20、(1)見解析;(2)拋物線的解析式為y=﹣x2+x+1.【分析】(1)分別作出A,B,C的對應(yīng)點A′,B′,C′即可.(2)設(shè)拋物線的解析式為y=a(x+2)(x﹣1),把B(0,1)代入求出a即可.【詳解】解:(1)如圖△A'B'C'即為所求.A′(0,2),B′(1,0),C′(1,4)(2)設(shè)拋物線的解析式為y=a(x+2)(x﹣1),把B(0,1)代入得到a=﹣,∴拋物線的解析式為y=﹣x2+x+1.【點睛】本題考查的知識點是求拋物線解析式以及圖形的旋轉(zhuǎn)變換,根據(jù)旋轉(zhuǎn)的性質(zhì)得出A′,B′,C′的坐標是解此題的關(guān)鍵.21、(1)19.5m;(2)2s【分析】(1)根據(jù)拋物線解析式,先求出拋物線的定點,判斷小球最高飛行高度,從而判斷能否達到19.5m;(2)根據(jù)定點坐標知道,小球飛從地面飛行至最高點需要2s,根據(jù)二次函數(shù)的對稱性,可知從最高落在地面,也需要2s.【詳解】(1)h=20t-由二次函數(shù)可知:拋物線開口向下,且頂點坐標為(2,20),可知小球的飛行高度為h=20m>19.5m所以小球的飛行高度能否達到19.5m;(2)根據(jù)拋物線的對稱性可知,小球從最高點落到地面需要的時間與小球從地面上到最高點的時間相等.因為由二次函數(shù)的頂點坐標可知當t=2s時小球達到最高點,所以小球從最高點到落地需要2s.【點睛】本題考查二次函數(shù)的實際運用,解題關(guān)鍵是將二次函數(shù)轉(zhuǎn)化為頂點式,得出頂點坐標,然后分析求解.22、(1)證明見解析;(2).【分析】(1)連接OF,只要證明OF∥BC,即可推出OF⊥CD,由此即可解決問題;(2)連接AF,利用∠D=30°,求出∠CBF=∠DBF=30°,得出BF=2,在利用勾股定理得出AB的長度,從而求出⊙O的半徑.【詳解】(1)連接OF,∵,∴∠CBF=∠FBA,∵OF=OB,∴∠FBO=∠OFB,∵點A、O、B三點共線,∴∠CBF=∠OFB,∴BC∥OF,∴∠OFC+∠C=180°,∵∠C=90°,∴∠OFC=90°,即OF⊥DC,∴CD為⊙O的切線;(2)連接AF,∵AB為直徑,∴∠AFB=90°,∵∠D=30°,∴∠CBD=60°,∵,∴∠CBF=∠DBF=∠CBD=30°,在,CF=1,∠CBF=30°,∴BF=2CF=2,在,∠ABF=30°,BF=2,∴AF=AB,∴AB2=(AB)2+BF2,即AB2=4,∴,⊙O的半徑為;【點睛】本題考查切線的判定、直角三角形30度角的性質(zhì)、勾股定理,直徑對的圓周角為90°等知識,解題的關(guān)鍵是靈活運用所學知識解決問題,學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考??碱}型.23、(1)半徑為6;(2)見解析【分析】(1)根據(jù)直徑所對的圓周角是直角,證明AD⊥BC,結(jié)合DC=BD可得AB=AC=1,則半徑可求出;

(2)連接OD,先證得∠AED=90°,根據(jù)三角形中位線定理得出OD∥AC,由平行線的性質(zhì),得出OD⊥DE,則結(jié)論得證.【詳解】解:(1)∵AB為⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,又∵BD=CD,∴AB=AC=1,∴⊙O半徑為6;(2)證明:連接OD,∵∠CDE=∠DAC,∴∠CDE+∠ADE=∠DAC+∠ADE,∴∠AED=∠ADB,由(1)知∠ADB=90°,∴∠AED=90°,∵DC=BD,OA=OB,∴OD∥AC.∴∠ODF=∠AED=90°,∴半徑OD⊥EF.∴DE為⊙O的切線.【點睛】本題考查切線的判定,圓周角定理,熟練掌握切線的判定方法是解題的關(guān)鍵.24、1【分析】矩形對角線相等且互相平分,即OA=OD,根據(jù)∠AOD=60°可得△AOD為等邊三角形,即OA=AD,∵AE⊥BD,∴E為OD的中點,即可求OE的值.【詳解】解:∵對角線相等且互相平分,∴OA=OD∵∠AOD=60°∴△AOD為等邊三角形,則OA=AD,BD=2DO,AB=AD,∴AD=2,∵AE⊥BD,∴E為OD的中點∴OE=OD=AD=1,答:OE的長度為1.【點睛】本題考查了矩形對角線的性質(zhì),利用矩形對角線相等是解題關(guān)鍵.25、(1);(2)點P(,2)或(2,);(3)y=﹣2x+1【分析】(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,先求出點A,點B坐標,可得OA=2,OB=1,AM=1,由勾股定理可求AB長,由銳角三角函數(shù)可求解;(2)設(shè)點P(a,),用參數(shù)a表示MN的長,由面積關(guān)系可求a的值,即可求點P坐標;(3)如圖3,過點A作AC⊥x軸于點C,過點B作BD⊥y軸于點D,設(shè)點A(a,a2﹣4a),點B(b,b2﹣4b),通過證明△AOC∽△BOD,可得ab﹣4(a+b)+17=0,由根與系數(shù)關(guān)系可求a+b=k+4,ab=﹣m,可得y=kx+1﹣4k=k(x﹣4)+1,可得直線y=k(x﹣4)+1過定點N(4,1),則當PN⊥直線y=kx+m時,點P到直線y=kx+m的距離最大,由待定系數(shù)法可求直線PN的解析式,可求k,m的值,即可求解.【詳解】解:(1)如圖1,設(shè)直線l:y=x﹣1與x軸,y軸的交點為點A,點B,過點M作ME⊥AB,∵直線l:y=x﹣1與x軸,y軸的交點為點A,點B,∴點A(2,0),點B(0,﹣1),且點M(1,0),∴AO=2,BO=1,AM=OM=1,∴AB===,∵tan∠OAB=tan∠MAE=,∴,∴ME=,∴點M到直線l:y=x﹣1的距離為;(2)設(shè)點P(a,),(a>0)∴OM=a,ON=,∴MN==,∵PM

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論