版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
March2024
Mcsey
Quartery
AgenerativeAIreset:
Rewiringtoturnpotentialintovaluein2024
ThegenerativeAIpayoffmayonlycomewhencompaniesdodeeperorganizationalsurgeryontheirbusiness.
byEricLamarre,AlexSingla,AlexanderSukharevsky,andRodneyZemmel
It’stimeforagenerativeAI(genAI)reset.Theinitialenthusiasmandflurryofactivityin2023isgivingwaytosecondthoughtsandrecalibrationsascompaniesrealizethatcapturinggenAI’senormouspotentialvalueisharderthanexpected.
With2024shapinguptobetheyearforgenAItoproveitsvalue,companiesshould
keepinmindthehardlessonslearnedwithdigitalandAItransformations:competitiveadvantagecomesfrombuildingorganizationalandtechnologicalcapabilitiestobroadlyinnovate,deploy,andimprovesolutionsatscale—ineffect,rewiringthebusinessfor
distributeddigitalandAIinnovation.
CompanieslookingtoscoreearlywinswithgenAIshouldmovequickly.ButthosehopingthatgenAIoffersashortcutpastthetough—andnecessary—organizationalsurgery
arelikelytomeetwithdisappointingresults.Launchingpilotsis(relatively)easy;gettingpilotstoscaleandcreatemeaningfulvalueishardbecausetheyrequireabroadsetofchangestothewayworkactuallygetsdone.
Let’sbrieflylookatwhatthishasmeantforonePacificregiontelecommunications
company.ThecompanyhiredachiefdataandAIofficerwithamandateto“enablethe
organizationtocreatevaluewithdataandAI.”ThechiefdataandAIofficerworkedwith
thebusinesstodevelopthestrategicvisionandimplementtheroadmapfortheusecases.Afterascanofdomains(thatis,customerjourneysorfunctions)andusecaseopportunitiesacrosstheenterprise,leadershipprioritizedthehome-servicing/maintenancedomainto
pilotandthenscaleaspartofalargersequencingofinitiatives.Theytargeted,inparticular,thedevelopmentofagenAItooltohelpdispatchersandserviceoperatorsbetterpredict
thetypesofcallsandpartsneededwhenservicinghomes.
2
Leadershipputinplacecross-functionalproductteamswithsharedobjectivesand
incentivestobuildthegenAItool.Aspartofanefforttoupskilltheentireenterpriseto
betterworkwithdataandgenAItools,theyalsosetupadataandAIacademy,which
thedispatchersandserviceoperatorsenrolledinaspartoftheirtraining.Toprovide
thetechnologyanddataunderpinningsforgenAI,thechiefdataandAIofficeralso
selectedalargelanguagemodel(LLM)andcloudproviderthatcouldmeettheneedsofthedomainaswellasserveotherpartsoftheenterprise.ThechiefdataandAIofficer
alsooversawtheimplementationofadataarchitecturesothatthecleanandreliable
data(includingservicehistoriesandinventorydatabases)neededtobuildthegenAItoolcouldbedeliveredquicklyandresponsibly.
OurbookRewired:TheMcKinseyGuidetoOutcompetingintheAgeofDigitalandAI(Wiley,June2023)providesadetailedmanualonthesixcapabilitiesneededtodeliverthekindof
broadchangethatharnessesdigitalandAItechnology.Inthisarticle,wewillexplorehowtoextendeachofthosecapabilitiestoimplementasuccessfulgenAIprogramatscale.Whilerecognizingthatthesearestillearlydaysandthatthereismuchmoretolearn,ourexperiencehasshownthatbreakingopenthegenAIopportunityrequirescompaniestorewirehowtheyworkinthefollowingways.
FigureoutwheregenAIcopilotscangiveyouarealcompetitiveadvantage
ThebroadexcitementaroundgenAIanditsrelativeeaseofusehasledtoaburstof
experimentationacrossorganizations.Mostoftheseinitiatives,however,won’tgenerateacompetitiveadvantage.Onebank,forexample,boughttensofthousandsofGitHub
Copilotlicenses,butsinceitdidn’thaveaclearsenseofhowtoworkwiththetechnology,progresswasslow.Anotherunfocusedeffortweoftenseeiswhencompaniesmove
toincorporategenAIintotheircustomerservicecapabilities.Customerserviceisa
commoditycapability,notpartofthecorebusiness,formostcompanies.WhilegenAImighthelpwithproductivityinsuchcases,itwon’tcreateacompetitiveadvantage.
Tocreatecompetitiveadvantage,companiesshouldfirstunderstandthedifference
betweenbeinga“taker”(auserofavailabletools,oftenviaAPIsandsubscriptionservices),a“shaper”(anintegratorofavailablemodelswithproprietarydata),anda“maker”(abuilderofLLMs).Fornow,themakerapproachistooexpensiveformostcompanies,sothesweetspotforbusinessesisimplementingatakermodelforproductivityimprovementswhile
buildingshaperapplicationsforcompetitiveadvantage.
MuchofgenAI’snear-termvalueiscloselytiedtoitsabilitytohelppeopledotheir
currentjobsbetter.Inthisway,genAItoolsactascopilotsthatworksidebysidewithanemployee,creatinganinitialblockofcodethatadevelopercanadapt,forexample,ordraftingarequisitionorderforanewpartthatamaintenanceworkerinthefield
canreviewandsubmit(seesidebar“CopilotexamplesacrossthreegenerativeAI
archetypes”).Thismeanscompaniesshouldbefocusingonwherecopilottechnologycanhavethebiggestimpactontheirpriorityprograms.
3
Copilotexamplesacrossthree
generativeAI
archetypes
?“Taker”copilotshelp
realestatecustomers
siftthroughproperty
optionsandfindthemostpromisingone,write
codeforadeveloper,
andsummarizeinvestor
transcripts.
?“Shaper”copilotsprovide
recommendationstosales
repsforupsellingcustomersbyconnectinggenerativeAItoolstocustomerrelationshipmanagementsystems,
financialsystems,and
customerbehaviorhistories;createvirtualassistantsto
personalizetreatmentsforpatients;andrecommendsolutionsformaintenanceworkersbasedonhistoricaldata.
?“Maker”copilotsarefoundationmodels
thatlabscientistsat
pharmaceuticalcompaniescanusetofindandtest
newandbetterdrugs
morequickly.
Someindustrialcompanies,forexample,haveidentifiedmaintenanceasacriticaldomainfortheirbusiness.
Reviewingmaintenancereportsandspendingtimewithworkersonthefrontlinescanhelpdeterminewhere
agenAIcopilotcouldmakeabigdifference,suchas
inidentifyingissueswithequipmentfailuresquickly
andearlyon.AgenAIcopilotcanalsohelpidentify
rootcausesoftruckbreakdownsandrecommend
resolutionsmuchmorequicklythanusual,aswellas
actasanongoingsourceforbestpracticesorstandardoperatingprocedures.
Thechallengewithcopilotsisfiguringouthowto
generaterevenuefromincreasedproductivity.In
thecaseofcustomerservicecenters,forexample,companiescanstoprecruitingnewagentsanduseattritiontopotentiallyachieverealfinancialgains.
Definingtheplansforhowtogeneraterevenuefromtheincreasedproductivityupfront,therefore,iscrucialto
capturingthevalue.
Upskillthetalentyouhave
butbeclearaboutthegen-AI-specificskillsyouneed
Bynow,mostcompanieshaveadecentunderstandingofthetechnicalgenAIskillstheyneed,suchasmodelfine-tuning,vectordatabaseadministration,prompt
engineering,andcontextengineering.Inmany
cases,theseareskillsthatyoucantrainyourexistingworkforcetodevelop.ThosewithexistingAIand
machinelearning(ML)capabilitieshaveastronghead
start.Dataengineers,forexample,canlearnmultimodalprocessingandvectordatabasemanagement,MLOps(MLoperations)engineerscanextendtheirskillsto
LLMOps(LLMoperations),anddatascientistscan
developpromptengineering,biasdetection,andfine-tuningskills.
Thelearningprocesscantaketwotothreemonthsto
gettoadecentlevelofcompetencebecauseofthe
complexitiesinlearningwhatvariousLLMscanandcan’tdoandhowbesttousethem.Thecodersneedtogain
experiencebuildingsoftware,testing,andvalidating
4
answers,forexample.Ittookonefinancial-servicescompanythreemonthstotrainitsbestdatascientiststoahighlevelofcompetence.Whilecoursesanddocumentation
areavailable—manyLLMprovidershavebootcampsfordevelopers—wehavefound
thatthemosteffectivewaytobuildcapabilitiesatscaleisthroughapprenticeship,
trainingpeopletothentrainothers,andbuildingcommunitiesofpractitioners.Rotatingexpertsthroughteamstotrainothers,schedulingregularsessionsforpeopletoshare
learnings,andhostingbiweeklydocumentationreviewsessionsarepracticesthathaveprovensuccessfulinbuildingcommunitiesofpractitioners(seesidebar“AsampleofnewgenerativeAIskillsneeded”).
It’simportanttobearinmindthatsuccessfulgenAIskillsareaboutmorethancoding
proficiency.OurexperienceindevelopingourowngenAIplatform,Lilli,showedusthat
thebestgenAItechnicaltalenthasdesignskillstouncoverwheretofocussolutions,
contextualunderstandingtoensurethemostrelevantandhigh-qualityanswersare
generated,collaborationskillstoworkwellwithknowledgeexperts(totestandvalidate
answersanddevelopanappropriatecurationapproach),strongforensicskillstofigure
outcausesofbreakdowns(istheissuethedata,theinterpretationoftheuser’sintent,the
qualityofmetadataonembeddings,orsomethingelse?),andanticipationskillstoconceiveofandplanforpossibleoutcomesandtoputtherightkindoftrackingintotheircode.A
purecoderwhodoesn’tintrinsicallyhavetheseskillsmaynotbeasusefulateammember.
Whilecurrentupskillingislargelybasedona“l(fā)earnonthejob”approach,weseearapid
marketemergingforpeoplewhohavelearnedtheseskillsoverthepastyear.Thatskill
growthismovingquickly.GitHubreportedthatdeveloperswereworkingongenAIprojects“inbignumbers,”andthat65,000publicgenAIprojectswerecreatedonitsplatformin
2023—ajumpofalmost250percentoverthepreviousyear.IfyourcompanyisjuststartingitsgenAIjourney,youcouldconsiderhiringtwoorthreeseniorengineerswhohavebuiltagenAIshaperproductfortheircompanies.Thiscouldgreatlyaccelerateyourefforts.
Formacentralizedteamtoestablishstandardsthatenableresponsiblescaling
ToensurethatallpartsofthebusinesscanscalegenAIcapabilities,centralizing
competenciesisanaturalfirstmove.Thecriticalfocusforthiscentralteamwillbeto
developandputinplaceprotocolsandstandardstosupportscale,ensuringthatteamscanaccessmodelswhilealsominimizingriskandcontainingcosts.Theteam’swork
couldinclude,forexample,procuringmodelsandprescribingwaystoaccessthem,developingstandardsfordatareadiness,settingupapprovedpromptlibraries,andallocatingresources.
WhiledevelopingLilli,ourteamhaditsmindonscalewhenitcreatedanopenplug-inarchitectureandsettingstandardsforhowAPIsshouldfunctionandbebuilt.They
developedstandardizedtoolingandinfrastructurewhereteamscouldsecurely
experimentandaccessaGPTLLM,agatewaywithpreapprovedAPIsthatteamscouldaccess,andaself-servedeveloperportal.Ourgoalisthatthisapproach,overtime,can
5
AsampleofnewgenerativeAI
skillsneeded
Thefollowingareexamplesofnewskillsneededforthe
successfuldeploymentof
generativeAItools:
?datascientist:
–promptengineering
–in-contextlearning
–biasdetection
–patternidentification
–reinforcementlearningfromhumanfeedback
–hyperparameter/largelanguagemodelfine-
tuning;transferlearning
?dataengineer:
–datawranglinganddatawarehousing
–datapipelineconstruction
–multimodalprocessing
–vectordatabasemanagement
helpshift“Lilliasaproduct”(thatahandfulofteamsusetobuildspecificsolutions)to“Lilliasaplatform”(thatteamsacrosstheenterprisecanaccesstobuildotherproducts).
ForteamsdevelopinggenAIsolutions,squad
compositionwillbesimilartoAIteamsbutwithdata
engineersanddatascientistswithgenAIexperienceandmorecontributorsfromriskmanagement,compliance,
andlegalfunctions.Thegeneralideaofstaffingsquadswithresourcesthatarefederatedfromthedifferent
expertiseareaswillnotchange,buttheskillcompositionofagen-AI-intensivesquadwill.
Setupthetechnologyarchitecturetoscale
BuildingagenAImodelisoftenrelativelystraightforward,butmakingitfullyoperationalatscaleisadifferentmatterentirely.We’veseenengineersbuildabasicchatbotin
aweek,butreleasingastable,accurate,andcompliantversionthatscalescantakefourmonths.That’swhy,ourexperienceshows,theactualmodelcostsmaybeless
than10to15percentofthetotalcostsofthesolution.
Buildingforscaledoesn’tmeanbuildinganewtechnologyarchitecture.Butitdoesmeanfocusingonafewcore
decisionsthatsimplifyandspeedupprocesseswithoutbreakingthebank.Threesuchdecisionsstandout:
?Focusonreusingyourtechnology.Reusingcode
canincreasethedevelopmentspeedofgenAIuse
casesby30to50percent.Onegoodapproachis
simplycreatingasourceforapprovedtools,code,
andcomponents.Afinancial-servicescompany,for
example,createdalibraryofproduction-gradetools,
whichhadbeenapprovedbyboththesecurityandlegalteams,andmadethemavailableinalibraryforteams
touse.Moreimportantistakingthetimetoidentifyandbuildthosecapabilitiesthatarecommonacrossthe
mostpriorityusecases.Thesamefinancial-services
company,forexample,identifiedthreecomponentsthatcouldbereusedformorethan100identifiedusecases.Bybuildingthosefirst,theywereabletogeneratea
significantportionofthecodebaseforalltheidentifiedusecases—essentiallygivingeveryapplicationabig
headstart.
6
?FocusthearchitectureonenablingefficientconnectionsbetweengenAImodels
andinternalsystems.ForgenAImodelstoworkeffectivelyintheshaperarchetype,theyneedaccesstoabusiness’sdataandapplications.Advancesinintegrationandorchestrationframeworkshavesignificantlyreducedtheeffortrequiredtomake
thoseconnections.Butlayingoutwhatthoseintegrationsareandhowtoenable
themiscriticaltoensurethesemodelsworkefficientlyandtoavoidthecomplexity
thatcreatestechnicaldebt(the“tax”acompanypaysintermsoftimeandresourcesneededtoredressexistingtechnologyissues).Chiefinformationofficersandchief
technologyofficerscandefinereferencearchitecturesandintegrationstandardsfortheirorganizations.Keyelementsshouldincludeamodelhub,whichcontainstrainedandapprovedmodelsthatcanbeprovisionedondemand;standardAPIsthatactas
bridgesconnectinggenAImodelstoapplicationsordata;andcontextmanagement
andcaching,whichspeedupprocessingbyprovidingmodelswithrelevantinformationfromenterprisedatasources.
?Buildupyourtestingandqualityassurancecapabilities.OurownexperiencebuildingLillitaughtustoprioritizetestingoverdevelopment.Ourteaminvestedinnotonly
developingtestingprotocolsforeachstageofdevelopmentbutalsoaligningtheentire
teamsothat,forexample,itwasclearwhospecificallyneededtosignoffoneachstageoftheprocess.Thissloweddowninitialdevelopmentbutspeduptheoveralldelivery
paceandqualitybycuttingbackonerrorsandthetimeneededtofixmistakes.
Ensuredataqualityandfocusonunstructureddatatofuelyourmodels
TheabilityofabusinesstogenerateandscalevaluefromgenAImodelswilldependonhowwellittakesadvantageofitsowndata.Aswithtechnology,targetedupgradesto
existingdataarchitectureareneededtomaximizethefuturestrategicbenefitsofgenAI:
?Betargetedinrampingupyourdataqualityanddataaugmentationefforts.While
dataqualityhasalwaysbeenanimportantissue,thescaleandscopeofdatathatgen
AImodelscanuse—especiallyunstructureddata—hasmadethisissuemuchmore
consequential.Forthisreason,it’scriticaltogetthedatafoundationsright,from
clarifyingdecisionrightstodefiningcleardataprocessestoestablishingtaxonomiessomodelscanaccessthedatatheyneed.Thecompaniesthatdothiswelltietheir
dataqualityandaugmentationeffortstothespecificAI/genAIapplicationanduse
case—youdon’tneedthisdatafoundationtoextendtoeverycorneroftheenterprise.
Thiscouldmean,forexample,developinganewdatarepositoryforallequipment
specificationsandreportedissuestobettersupportmaintenancecopilotapplications.
?Understandwhatvalueislockedintoyourunstructureddata.Mostorganizationshave
traditionallyfocusedtheirdataeffortsonstructureddata(valuesthatcanbeorganizedintables,suchaspricesandfeatures).ButtherealvaluefromLLMscomesfromtheirabilitytoworkwithunstructureddata(forexample,PowerPointslides,videos,and
text).Companiescanmapoutwhichunstructureddatasourcesaremostvaluableandestablishmetadatataggingstandardssomodelscanprocessthedataandteamscan
7
findwhattheyneed(taggingisparticularlyimportanttohelpcompaniesremovedatafrommodelsaswell,ifnecessary).Becreativeinthinkingaboutdataopportunities.Somecompanies,forexample,areinterviewingsenioremployeesastheyretire
andfeedingthatcapturedinstitutionalknowledgeintoanLLMtohelpimprovetheircopilotperformance.
?Optimizetolowercostsatscale.Thereisoftenasmuchasatenfolddifference
betweenwhatcompaniespayfordataandwhattheycouldbepayingiftheyoptimized
theirdatainfrastructureandunderlyingcosts.Thisissueoftenstemsfromcompanies
scalingtheirproofsofconceptwithoutoptimizingtheirdataapproach.Twocosts
generallystandout.Oneisstoragecostsarisingfromcompaniesuploadingterabytes
ofdataintothecloudandwantingthatdataavailable24/7.Inpractice,companies
rarelyneedmorethan10percentoftheirdatatohavethatlevelofavailability,and
accessingtherestovera24-or48-hourperiodisamuchcheaperoption.Theother
costsrelatetocomputationwithmodelsthatrequireon-callaccesstothousandsof
processorstorun.Thisisespeciallythecasewhencompaniesarebuildingtheirown
models(themakerarchetype)butalsowhentheyareusingpretrainedmodelsand
runningthemwiththeirowndataandusecases(theshaperarchetype).Companies
couldtakeacloselookathowtheycanoptimizecomputationcostsoncloudplatforms—
forinstance,puttingsomemodelsinaqueuetorunwhenprocessorsaren’tbeingused(suchaswhenAmericansgotobedandconsumptionofcomputingserviceslikeNetflixdecreases)isamuchcheaperoption.
Buildtrustandreusabilitytodriveadoptionandscale
BecausemanypeoplehaveconcernsaboutgenAI,thebaronexplaininghowthesetoolsworkismuchhigherthanformostsolutions.Peoplewhousethetoolswanttoknowhowtheywork,notjustwhattheydo.Soit’simportanttoinvestextratimeandmoneytobuildtrustbyensuringmodelaccuracyandmakingiteasytocheckanswers.
Oneinsurancecompany,forexample,createdagenAItooltohelpmanageclaims.As
partofthetool,itlistedalltheguardrailsthathadbeenputinplace,andforeachanswerprovidedalinktothesentenceorpageoftherelevantpolicydocuments.ThecompanyalsousedanLLMtogeneratemanyvariationsofthesamequestiontoensureanswer
consistency.Thesesteps,amongothers,werecriticaltohelpingendusersbuildtrustinthetool.
PartofthetrainingformaintenanceteamsusingagenAItoolshouldbetohelpthem
understandthelimitationsofmodelsandhowbesttogettherightanswers.Thatincludes
teachingworkersstrategiestogettothebestanswerasfastaspossiblebystartingwith
broadquestionsthennarrowingthemdown.Thisprovidesthemodelwithmorecontext,
anditalsohelpsremoveanybiasofthepeoplewhomightthinktheyknowtheanswer
already.Havingmodelinterfacesthatlookandfeelthesameasexistingtoolsalsohelps
usersfeellesspressuredtolearnsomethingneweachtimeanewapplicationisintroduced.
Gettingtoscalemeansthatbusinesseswillneedtostopbuildingone-o
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版某三期護(hù)坡樁工程施工過程監(jiān)測與評估合同4篇
- 2025年度生態(tài)地板安裝與環(huán)保認(rèn)證服務(wù)合同4篇
- 二零二五年度品牌推廣電子商務(wù)B2B購銷數(shù)字資產(chǎn)交易合同4篇
- 2025年度文化創(chuàng)意產(chǎn)業(yè)聘用員工勞動合同標(biāo)準(zhǔn)文本4篇
- 二零二五年度健康食品品牌形象設(shè)計(jì)與市場推廣合同3篇
- 二零二五年度生態(tài)農(nóng)場果品出口貿(mào)易合同4篇
- 二零二五年度家政服務(wù)合同中退款條款
- 二零二五年度商業(yè)空間面積調(diào)整補(bǔ)充合同4篇
- 2025年美發(fā)店大數(shù)據(jù)分析與營銷策略合作合同協(xié)議書
- 課題申報(bào)參考:媒介化加速視域下社交媒體新個體文化的建構(gòu)與引導(dǎo)研究
- 【語文】第23課《“蛟龍”探海》課件 2024-2025學(xué)年統(tǒng)編版語文七年級下冊
- 加強(qiáng)教師隊(duì)伍建設(shè)教師領(lǐng)域?qū)W習(xí)二十屆三中全會精神專題課
- 2025警察公安派出所年終總結(jié)工作匯報(bào)
- 2024-2025學(xué)年人教版數(shù)學(xué)七年級上冊期末復(fù)習(xí)卷(含答案)
- 2024年決戰(zhàn)行測5000題言語理解與表達(dá)(培優(yōu)b卷)
- 四年級數(shù)學(xué)上冊人教版24秋《小學(xué)學(xué)霸單元期末標(biāo)準(zhǔn)卷》考前專項(xiàng)沖刺訓(xùn)練
- 中國游戲發(fā)展史課件
- (完整版)減數(shù)分裂課件
- 銀行辦公大樓物業(yè)服務(wù)投標(biāo)方案投標(biāo)文件(技術(shù)方案)
- 第01講 直線的方程(九大題型)(練習(xí))
- 微粒貸逾期還款協(xié)議書范本
評論
0/150
提交評論