版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
專題04巧用中點(diǎn)解決幾何問題一、【知識(shí)回顧】方法與技巧:中點(diǎn)問題常見輔助線做法①遇到三角形邊上的中點(diǎn),考慮構(gòu)造三角形的中位線②遇到直角三角形斜邊的中點(diǎn),考慮直角三角形斜邊的中線性質(zhì)③遇到等腰三角形底邊的中點(diǎn),考慮等腰三角形“三線合一”的性質(zhì)④遇到中點(diǎn)+垂線,角平分線+垂線,考慮垂直平分線的性質(zhì)⑤遇到面積類型題,考慮三角形中線平分面積⑥遇到線段數(shù)量關(guān)系,考慮倍長(zhǎng)中線構(gòu)造全等三角形二、【考點(diǎn)類型】考點(diǎn)1:構(gòu)造三角形的中位線典例1:(2022秋·四川眉山·九年級(jí)??计谥校┤鐖D,SKIPIF1<0中,SKIPIF1<0,點(diǎn)E是SKIPIF1<0的中點(diǎn),若SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,線段SKIPIF1<0的長(zhǎng)為(
)A.1cm B.2cm C.3cm D.4cm【答案】A【分析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0于F,利用“角邊角”證明SKIPIF1<0和SKIPIF1<0全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得SKIPIF1<0,再求出SKIPIF1<0并判斷出SKIPIF1<0是SKIPIF1<0的中位線,然后根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得SKIPIF1<0.【詳解】解:如圖,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于F,∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0∵SKIPIF1<0∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0,又∵點(diǎn)E為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0是SKIPIF1<0的中位線,∴SKIPIF1<0.故選:A【點(diǎn)睛】本題考查了三角形的中位線平行于第三邊并且等于第三邊的一半,全等三角形的判定與性質(zhì),熟記性質(zhì)并作出輔助線構(gòu)造成全等三角形是解題的關(guān)鍵.【變式1】(2022秋·山東濟(jì)寧·九年級(jí)濟(jì)寧市第十五中學(xué)統(tǒng)考期末)如圖,在SKIPIF1<0中,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0于點(diǎn)E,點(diǎn)F是SKIPIF1<0的中點(diǎn),若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的長(zhǎng)為(
).A.2 B.3 C.4 D.5【答案】A【分析】分別延長(zhǎng)SKIPIF1<0,SKIPIF1<0交于點(diǎn)M,構(gòu)造等腰SKIPIF1<0,利用等腰三角形的“三線合一”的性質(zhì)和三角形中位線定理求解即可.【詳解】解:延長(zhǎng)SKIPIF1<0,SKIPIF1<0交于點(diǎn)M,∵SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∵點(diǎn)F是SKIPIF1<0的中點(diǎn),SKIPIF1<0,∴SKIPIF1<0為SKIPIF1<0中位線,∴SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查的是三角形中位線定理、全等三角形的判定和性質(zhì),掌握三角形的中位線平行于第三邊,且等于第三邊的一半是解題的關(guān)鍵.【變式2】(2022春·全國(guó)·八年級(jí)假期作業(yè))已知:如圖,在SKIPIF1<0中,中線SKIPIF1<0交于點(diǎn)SKIPIF1<0分別是SKIPIF1<0的中點(diǎn).求證:(1)SKIPIF1<0;(2)SKIPIF1<0和SKIPIF1<0互相平分.【答案】(1)見解析;(2)見解析.【分析】(1)利用三角形中位線定理即可得出FG=DE,且FG∥DE;(2)由(1)的條件可以得出四邊形DEFG為平行四邊形,根據(jù)平行四邊形的性質(zhì)可以得出對(duì)角線SKIPIF1<0和SKIPIF1<0互相平分.【詳解】(1)在△ABC中,∵BE、CD為中線∴AD=BD,AE=CE,∴DE∥BC且DE=SKIPIF1<0BC.在△OBC中,∵OF=FB,OG=GC,∴FG∥BC且FG=SKIPIF1<0BC.∴DE∥FG(2)由(1)知:DE∥FG,DE=FG.∴四邊形DFGE為平行四邊形.∴SKIPIF1<0和SKIPIF1<0互相平分【點(diǎn)睛】此題主要考查了三角形的中位線定理,平行四邊形的判定和性質(zhì),正確利用三角形中位線定理是解題關(guān)鍵.【變式3】(2021·全國(guó)·九年級(jí)專題練習(xí))如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別是邊AB,AC的中點(diǎn),延長(zhǎng)BC到點(diǎn)F,使CF=SKIPIF1<0BC.連結(jié)CD、EF,那么CD與EF相等嗎?請(qǐng)證明你的結(jié)論.【答案】CD=EF,理由見解析.【分析】根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得DE∥BC且DESKIPIF1<0BC,然后證得四邊形DEFC是平行四邊形,再根據(jù)平行四邊形的對(duì)邊相等即可說明.【詳解】解:結(jié)論:CD=EF.理由如下:∵D、E分別是邊AB、AC的中點(diǎn),∴DE∥BC,DESKIPIF1<0BC.∵CFSKIPIF1<0BC,∴DE=CF,∴四邊形DEFC是平行四邊形,∴CD=EF.【點(diǎn)睛】本題主要考查了三角形的中位線和平行四邊形的判定與性質(zhì),掌握三角形的中位線平行于第三邊并且等于第三邊的一半成為解答本題的關(guān)鍵.考點(diǎn)2:直角三角形斜邊的鵝中線典例2:(2022秋·福建福州·八年級(jí)統(tǒng)考期中)如圖,在一塊含SKIPIF1<0角的三角板(SKIPIF1<0)的頂點(diǎn)SKIPIF1<0處作SKIPIF1<0,垂足為SKIPIF1<0.在SKIPIF1<0的右側(cè)作SKIPIF1<0使SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0的延長(zhǎng)線交SKIPIF1<0于SKIPIF1<0.設(shè)SKIPIF1<0,SKIPIF1<0,則下列式子成立的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)等腰三角形的性質(zhì)可得出SKIPIF1<0,因?yàn)镾KIPIF1<0可得出SKIPIF1<0,又根據(jù)SKIPIF1<0可得出SKIPIF1<0,SKIPIF1<0,最后根據(jù)外角的性質(zhì)即可得出答案.【詳解】∵SKIPIF1<0為等腰三角形,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,故選D.【點(diǎn)睛】本題主要考查了等腰三角形的性質(zhì),三角形內(nèi)角和定理,三角形外角的性質(zhì),通過三角形外角的性質(zhì)證得SKIPIF1<0是解決問題的關(guān)鍵.【變式1】(2022秋·新疆烏魯木齊·九年級(jí)??计谥校┤鐖D,SKIPIF1<0SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足SKIPIF1<0,則線段SKIPIF1<0長(zhǎng)的最小值為(
)A.2 B.1 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】如圖,取SKIPIF1<0的中點(diǎn)O,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,根據(jù)直角三角形斜邊中線的性質(zhì)求出SKIPIF1<0,根據(jù)勾股定理求出SKIPIF1<0,根據(jù)兩點(diǎn)之間線段最短得到SKIPIF1<0即可解決問題.【詳解】解:如圖,取SKIPIF1<0的中點(diǎn)O,連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴PC的最小值為1,故選:B.【點(diǎn)睛】本題考查了直角三角形斜邊中線的性質(zhì),勾股定理,兩點(diǎn)之間線段最短等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問題,屬于中考??碱}型.【變式2】(2022秋·廣西貴港·九年級(jí)統(tǒng)考期中)如圖,在SKIPIF1<0中,SKIPIF1<0,由圖中的尺規(guī)作圖痕跡得到的射線SKIPIF1<0與SKIPIF1<0交于點(diǎn)E,點(diǎn)F為SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的周長(zhǎng)為(
)A.SKIPIF1<0+1 B.SKIPIF1<0+2 C.2SKIPIF1<0+2 D.2SKIPIF1<0+3【答案】C【分析】根據(jù)作圖可知SKIPIF1<0平分SKIPIF1<0,結(jié)合SKIPIF1<0,由三線合一求出SKIPIF1<0長(zhǎng),根據(jù)勾股定理求出SKIPIF1<0長(zhǎng),再根據(jù)直角三角形斜邊中線的性質(zhì)求出SKIPIF1<0長(zhǎng),即可解答.【詳解】解:由作圖可知,SKIPIF1<0平分SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,點(diǎn)F為SKIPIF1<0的中點(diǎn),SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的周長(zhǎng)為:SKIPIF1<0.故選:C.【點(diǎn)睛】本題考查了角平分線的概念,等腰三角形性質(zhì),勾股定理,直角三角形性質(zhì),求出SKIPIF1<0邊是解題的關(guān)鍵.【變式3】(2021·廣東廣州·統(tǒng)考中考真題)如圖,在四邊形ABCD中,SKIPIF1<0,點(diǎn)E是AC的中點(diǎn),且SKIPIF1<0(1)尺規(guī)作圖:作SKIPIF1<0的平分線AF,交CD于點(diǎn)F,連結(jié)EF、BF(保留作圖痕跡,不寫作法);(2)在(1)所作的圖中,若SKIPIF1<0,且SKIPIF1<0,證明:SKIPIF1<0為等邊三角形.【答案】(1)圖見解析;(2)證明見解析.【分析】(1)根據(jù)基本作圖—角平分線作法,作出SKIPIF1<0的平分線AF即可解答;(2)根據(jù)直角三角形斜邊中線性質(zhì)得到SKIPIF1<0并求出SKIPIF1<0,再根據(jù)等腰三角形三線合一性質(zhì)得出SKIPIF1<0,從而得到EF為中位線,進(jìn)而可證SKIPIF1<0,SKIPIF1<0,從而由有一個(gè)角是60°的等腰三角形是等邊三角形得出結(jié)論.【詳解】解:(1)如圖,AF平分SKIPIF1<0,(2)∵SKIPIF1<0,且SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵AF平分SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0又∵SKIPIF1<0∴SKIPIF1<0為等邊三角形.【點(diǎn)睛】本題主要考查了基本作圖和等腰三角形性質(zhì)以及與三角形中點(diǎn)有關(guān)的兩個(gè)定理,解題關(guān)鍵是掌握等腰三角形三線合一定理、直角三角形斜邊中線等于斜邊一半以及三角形中位線定理.考點(diǎn)3:等腰三角形三線合一性質(zhì)典例3:(2023秋·江西南昌·八年級(jí)統(tǒng)考期末)如圖所示,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0于點(diǎn)E,SKIPIF1<0于點(diǎn)D,交SKIPIF1<0于F.(1)若SKIPIF1<0,求SKIPIF1<0的度數(shù);(2)若點(diǎn)F是SKIPIF1<0的中點(diǎn),求證:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)見解析【分析】(1)求得SKIPIF1<0的度數(shù)后利用四邊形的內(nèi)角和定理求得結(jié)論即可;(2)連接SKIPIF1<0,根據(jù)等腰三角形“三線合一”的性質(zhì)得到SKIPIF1<0,SKIPIF1<0,又易證SKIPIF1<0,即得出SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0;(2)如圖,連接SKIPIF1<0,∵SKIPIF1<0,且點(diǎn)F是SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.【點(diǎn)睛】本題考查四邊形的內(nèi)角和、三角形的內(nèi)角和及等腰三角形的性質(zhì),解題的關(guān)鍵是準(zhǔn)確作出輔助線,合理轉(zhuǎn)化角與角之間的關(guān)系.【變式1】(2020·內(nèi)蒙古赤峰·統(tǒng)考中考真題)如圖,SKIPIF1<0中,AB=AC,AD是∠BAC的平分線,EF是AC的垂直平分線,交AD于點(diǎn)O.若OA=3,則SKIPIF1<0外接圓的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】先根據(jù)等腰三角形的三線合一可得AD是BC的垂直平分線,從而可得點(diǎn)O即為SKIPIF1<0外接圓的圓心,再利用圓的面積公式即可得.【詳解】SKIPIF1<0,AD是SKIPIF1<0的平分線SKIPIF1<0,且AD是BC邊上的中線(等腰三角形的三線合一)SKIPIF1<0是BC的垂直平分線SKIPIF1<0是AC的垂直平分線SKIPIF1<0點(diǎn)O為SKIPIF1<0外接圓的圓心,OA為外接圓的半徑SKIPIF1<0SKIPIF1<0外接圓的面積為SKIPIF1<0故選:D.【點(diǎn)睛】本題考查了等腰三角形的三線合一、三角形外接圓,正確找出三角形外接圓的圓心是解題關(guān)鍵.【變式2】(2022秋·浙江杭州·八年級(jí)統(tǒng)考期末)如圖,在△ABC中,AB=AC,AD平分∠BAC,DE⊥AB于E點(diǎn),DF⊥AC于點(diǎn)F,則下列四個(gè)結(jié)論:①AD上任意一點(diǎn)到AB,AC兩邊的距離相等;②AD⊥BC且BD=CD;③∠BDE=∠CDF;④AE=AF.其中正確的有()A.②③ B.①③ C.①②④ D.①②③④【答案】D【分析】根據(jù)等腰三角形三線合一的性質(zhì),角平分線上的點(diǎn)到角兩邊的距離相等,利用“HL”證明SKIPIF1<0可得對(duì)應(yīng)角SKIPIF1<0,全等三角形對(duì)應(yīng)邊相等可得SKIPIF1<0,然后求出SKIPIF1<0可得出答案.【詳解】∵SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0上任意一點(diǎn)到SKIPIF1<0、SKIPIF1<0的距離相等(角平分線上的點(diǎn)到角兩邊的距離相等),故①正確.∵SKIPIF1<0,SKIPIF1<0平分SKIPIF1<0,∴SKIPIF1<0,且SKIPIF1<0(線段垂直平分線上的點(diǎn)到線段兩端的距離相等),故②正確.∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0≌SKIPIF1<0(HL),∴SKIPIF1<0故③正確,SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,故④正確,故選D.【點(diǎn)睛】本題考查了等腰三角形三線合一的性質(zhì),全等三角形的判定與性質(zhì),角平分線的性質(zhì),熟記各性質(zhì)是解題的關(guān)鍵.【變式3】(2022秋·吉林長(zhǎng)春·八年級(jí)??茧A段練習(xí))如圖所示,在SKIPIF1<0中,SKIPIF1<0,直線EF是AB的垂直平分線,D是BC的中點(diǎn),M是EF上一個(gè)動(dòng)點(diǎn),SKIPIF1<0的面積為12,SKIPIF1<0,則SKIPIF1<0周長(zhǎng)的最小值是_______________.【答案】8【分析】連接AD,AM,由EF是線段AB的垂直平分線,得到AM=BM,則△BDM的周長(zhǎng)=BD+BM+DM=AM+DM+BD,要想△BDM的周長(zhǎng)最小,即要使AM+DM的值最小,故當(dāng)A、M、D三點(diǎn)共線時(shí),AM+DM最小,即為AD,由此再根據(jù)三線合一定理求解即可.【詳解】解:如圖所示,連接AD,AM,∵EF是線段AB的垂直平分線,∴AM=BM,∴△BDM的周長(zhǎng)=BD+BM+DM=AM+DM+BD,∴要想△BDM的周長(zhǎng)最小,即要使AM+DM的值最小,∴當(dāng)A、M、D三點(diǎn)共線時(shí),AM+DM最小,即為AD,∵AB=AC,D為BC的中點(diǎn),∴AD⊥BC,SKIPIF1<0,∴SKIPIF1<0,∴AD=6,∴△BDM的周長(zhǎng)最小值=AD+BD=8,故答案為:8.【點(diǎn)睛】本題主要考查了線段垂直平分線的性質(zhì),三線合一定理,解題的關(guān)鍵在于能夠根據(jù)題意得到當(dāng)A、M、D三點(diǎn)共線時(shí),AM+DM最小,即為AD.考點(diǎn)4:垂直平分線性質(zhì)典例4:(2022·新疆烏魯木齊·??家荒#┤鐖D,在矩形ABCD中,AB=4cm,對(duì)角線AC與BD相交于點(diǎn)O,DE⊥AC,垂足為E,AE=3CE,則DE的長(zhǎng)為(
)A.SKIPIF1<0 B.2cm C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】由矩形的性質(zhì)得出OA=OD=OC,再根據(jù)線段垂直平分線的性質(zhì)得出OD=CD,最后根據(jù)勾股定理計(jì)算,即可得到答案.【詳解】∵四邊形ABCD是矩形,∴OA=SKIPIF1<0AC,OD=SKIPIF1<0BD,AC=BD,CD=AB=4cm,∴OA=OD=OC,∵DE⊥AC,AE=3CE,SKIPIF1<0∴OE=CESKIPIF1<0,∠DEA=90°,∴OD=CD=4cm,∴OC=OD=CD=4cm,∴OE=CESKIPIF1<0=2cm∴SKIPIF1<0故選:D.【點(diǎn)睛】本題考查了矩形、垂直平分線、勾股定理的知識(shí);解題的關(guān)鍵是熟練掌握矩形、垂直平分線的性質(zhì),從而完成求解.【變式1】(2021·四川內(nèi)江·統(tǒng)考中考真題)如圖,矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,對(duì)角線SKIPIF1<0的垂直平分線SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0、交SKIPIF1<0于點(diǎn)SKIPIF1<0,則線段SKIPIF1<0的長(zhǎng)為__.【答案】SKIPIF1<0##7.5【分析】根據(jù)矩形的性質(zhì)和勾股定理求出BD,證明△BOF∽△BCD,根據(jù)相似三角形的性質(zhì)得到比例式,求出EF即可.【詳解】解:如圖:SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的垂直平分線,SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的垂直平分線,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查的是矩形的性質(zhì)、線段垂直平分線的性質(zhì)以及勾股定理的應(yīng)用,掌握矩形的四個(gè)角是直角、對(duì)邊相等以及線段垂直平分線的定義是解題的關(guān)鍵.【變式2】(2020·江西·統(tǒng)考中考真題)如圖,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的延長(zhǎng)線交SKIPIF1<0于點(diǎn)SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的度數(shù)為__________.【答案】SKIPIF1<0【分析】如圖,連接SKIPIF1<0,延長(zhǎng)SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0利用等腰三角形的三線合一證明SKIPIF1<0是SKIPIF1<0的垂直平分線,從而得到SKIPIF1<0再次利用等腰三角形的性質(zhì)得到:SKIPIF1<0從而可得答案.【詳解】解:如圖,連接SKIPIF1<0,延長(zhǎng)SKIPIF1<0與SKIPIF1<0交于點(diǎn)SKIPIF1<0SKIPIF1<0SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0是SKIPIF1<0的垂直平分線,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0【點(diǎn)睛】本題考查的是等腰三角形的性質(zhì),掌握等腰三角形的三線合一是解題的關(guān)鍵.【變式3】(2020·江蘇連云港·中考真題)如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,對(duì)角線SKIPIF1<0的垂直平分線與邊SKIPIF1<0、SKIPIF1<0分別相交于SKIPIF1<0、SKIPIF1<0.(1)求證:四邊形SKIPIF1<0是菱形;(2)若SKIPIF1<0,SKIPIF1<0,求菱形SKIPIF1<0的周長(zhǎng).【答案】(1)見解析;(2)52【分析】(1)先證明SKIPIF1<0,得到四邊形SKIPIF1<0為平行四邊形,再根據(jù)菱形定義證明即可;(2)先根據(jù)菱形性質(zhì)求出OB、OM、再根據(jù)勾股定理求出BM,問題的得解.【詳解】(1)∵SKIPIF1<0,∴SKIPIF1<0.∵SKIPIF1<0是對(duì)角線SKIPIF1<0的垂直平分線,∴SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0為平行四邊形.又∵SKIPIF1<0,∴四邊形SKIPIF1<0為菱形.(2)∵四邊形SKIPIF1<0為菱形,SKIPIF1<0,SKIPIF1<0.∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.在SKIPIF1<0中,SKIPIF1<0.∴菱形SKIPIF1<0的周長(zhǎng)SKIPIF1<0.【點(diǎn)睛】本題考查了菱形判定與性質(zhì)定理,熟知菱形判定方法和性質(zhì)定理是解題關(guān)鍵.考點(diǎn)5:中線平分面積典例5:(2022秋·安徽滁州·八年級(jí)??茧A段練習(xí))如圖,SKIPIF1<0的面積為SKIPIF1<0,SKIPIF1<0垂直SKIPIF1<0的平分線SKIPIF1<0于SKIPIF1<0,則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根據(jù)SKIPIF1<0垂直SKIPIF1<0的平分線SKIPIF1<0于SKIPIF1<0,即可求出SKIPIF1<0,又知SKIPIF1<0和SKIPIF1<0等底同高,可以證明兩三角形面積相等,即可證明三角形SKIPIF1<0的面積.【詳解】解:延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,∵SKIPIF1<0垂直SKIPIF1<0的平分線SKIPIF1<0于SKIPIF1<0,SKIPIF1<0,又知SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0和SKIPIF1<0等底同高,∴SKIPIF1<0,∴SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查了全等三角形的性質(zhì)與判定,三角形中線的性質(zhì).證明出三角形PBC的面積和原三角形的面積之間的數(shù)量關(guān)系是解題的關(guān)鍵.【變式1】(2021秋·內(nèi)蒙古鄂爾多斯·八年級(jí)統(tǒng)考期末)如圖,在SKIPIF1<0中,SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0于點(diǎn)P,已知SKIPIF1<0的面積為SKIPIF1<0,則陰影部分的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,根據(jù)角平分線的定義得到SKIPIF1<0,由垂直的定義得到SKIPIF1<0,根據(jù)全等三角形的性質(zhì)得到SKIPIF1<0,進(jìn)而求得答案.【詳解】解:如圖,延長(zhǎng)SKIPIF1<0交SKIPIF1<0于SKIPIF1<0,SKIPIF1<0SKIPIF1<0平分SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,在SKIPIF1<0與SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0≌SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0陰影部分的面積SKIPIF1<0.故選A.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),利用三角形的中線求面積,角平分線的定義,垂直的定義,熟練掌握全等三角形的判定和性質(zhì)是解題的關(guān)鍵.【變式2】(2021秋·福建福州·八年級(jí)福建省福州延安中學(xué)??计谥校┤鐖D,△ABC中,AC=DC=3,AD平分∠BAC,BD⊥AD于D,E為AC的中點(diǎn),則圖中兩個(gè)陰影部分面積之差的最大值為(
)A.1.5 B.3 C.4.5 D.6【答案】C【分析】首先證明兩個(gè)陰影部分面積之差=S△ADC,當(dāng)CD⊥AC時(shí),△ACD的面積最大.【詳解】解:延長(zhǎng)BD交AC于點(diǎn)H.設(shè)AD交BE于點(diǎn)O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=SKIPIF1<0S△ABH,S△CDH=SKIPIF1<0S△ABH,∵S△OBD?S△AOE=S△ADB?S△ABE=S△ADH?S△CDH=S△ACD,∵AC=CD=3,∴當(dāng)DC⊥AC時(shí),△ACD的面積最大,最大面積為SKIPIF1<0×3×3=4.5.故選:C.【點(diǎn)睛】本題考查等腰三角形的判定和性質(zhì),三角形中線的性質(zhì)等知識(shí),解題的關(guān)鍵是學(xué)會(huì)用轉(zhuǎn)化的思想思考問題,屬于中考選擇題中的壓軸題.【變式3】(2023春·江蘇·八年級(jí)階段練習(xí))如圖,在平行四動(dòng)形紙板SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),連接SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.將一飛鏢隨機(jī)投擲到平行四邊形紙板上,則飛鏢落在陰影部分的概率為________.【答案】SKIPIF1<0##0.375【分析】先求出S△BED=SKIPIF1<0S△ABD,S△BFD=SKIPIF1<0S△CBD,S△BOF=SKIPIF1<0S△BFD=SKIPIF1<0S△CBD,再根據(jù)S△ABD=S△CBD=SKIPIF1<0,即可得答案.【詳解】解:∵E為AB的中點(diǎn),∴S△BED=SKIPIF1<0S△ABD,∵F為CD的中點(diǎn),∴S△BFD=SKIPIF1<0S△CBD,∵O為BD的中點(diǎn),∴S△BOF=SKIPIF1<0S△BFD=SKIPIF1<0S△CBD,∵S△ABD=S△CBD=SKIPIF1<0,∴S陰影=S△BED+S△BOF
=SKIPIF1<0+SKIPIF1<0=SKIPIF1<0,∴飛鏢落在陰影部分的概率為:SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了三角形中線的性質(zhì),概率的求法,解題的關(guān)鍵是三角形中線的性質(zhì)的靈活運(yùn)用.考點(diǎn)6:倍長(zhǎng)中線,構(gòu)全等典例6:(2022秋·甘肅定西·八年級(jí)統(tǒng)考期中)如圖,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0邊上的中線,則SKIPIF1<0的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】延長(zhǎng)AD至點(diǎn)E,使得DE=AD,可證△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根據(jù)三角形三邊關(guān)系即可求得AE的取值范圍,從而得到SKIPIF1<0的取值范圍.【詳解】如圖,延長(zhǎng)AD至點(diǎn)E,使得DE=AD,∵SKIPIF1<0是SKIPIF1<0邊上的中線,∴SKIPIF1<0,在△ABD和△CDE中,SKIPIF1<0,∴△ABDSKIPIF1<0△CDE(SAS),∴AB=CE=5,AD=DE,∵△ACE中,AC-CE<AE<AC+CE,∴4<AE<14,∴2<AD<7.故選:C.【點(diǎn)睛】本題主要考查倍長(zhǎng)中線法解題,能夠做出輔助線證出三角形全等再結(jié)合三角形三邊關(guān)系是解題關(guān)鍵.【變式1】(2021秋·河南信陽(yáng)·八年級(jí)校考期中)如圖,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正確結(jié)論的個(gè)數(shù)是()A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)【答案】C【分析】在AE取點(diǎn)F,使EF=BE.利用已知條件AB=AD+2BE,可得AD=AF,進(jìn)而證出2AE=AB+AD;②在AB上取點(diǎn)F,使BE=EF,連接CF.先由(SAS)證明△ACD≌△ACF,得出∠ADC=∠AFC;再根據(jù)線段垂直平分線、等腰三角形的性質(zhì)得出∠CFB=∠B;然后由鄰補(bǔ)角定義及四邊形的內(nèi)角和定理得出∠DAB+∠DCB=180°;③根據(jù)全等三角形的對(duì)應(yīng)邊相等得出CD=CF,根據(jù)線段垂直平分線的性質(zhì)性質(zhì)得出CF=CB,從而CD=CB;④由于△CEF≌△CEB,△ACD≌△ACF,根據(jù)全等三角形的面積相等易證S△ACE﹣2S△BCE=S△ADC.【詳解】解:①在AE取點(diǎn)F,使EF=BE,∵AB=AD+2BE=AF+EF+BE,EF=BE,∴AB=AD+2BE=AF+2BE,∴AD=AF,∴AB+AD=AF+EF+BE+AD=2AF+2EF=2(AF+EF)=2AE,∴AE=SKIPIF1<0(AB+AD),故①正確;②在AB上取點(diǎn)F,使BE=EF,連接CF.在△ACD與△ACF中,∵AD=AF,∠DAC=∠FAC,AC=AC,∴△ACD≌△ACF,∴∠ADC=∠AFC.∵CE垂直平分BF,∴CF=CB,∴∠CFB=∠B.又∵∠AFC+∠CFB=180°,∴∠ADC+∠B=180°,∴∠DAB+∠DCB=360﹣(∠ADC+∠B)=180°,故②正確;③由②知,△ACD≌△ACF,∴CD=CF,又∵CF=CB,∴CD=CB,故③正確;④易證△CEF≌△CEB,所以S△ACE﹣S△BCE=S△ACE﹣S△FCE=S△ACF,又∵△ACD≌△ACF,∴S△ACF=S△ADC,∴S△ACE﹣S△BCE=S△ADC,故④錯(cuò)誤;即正確的有3個(gè),故選:C.【點(diǎn)睛】本題考查了角平分線性質(zhì),全等三角形的性質(zhì)和判定,等腰三角形的性質(zhì),四邊形的內(nèi)角和定理,鄰補(bǔ)角定義等知識(shí)點(diǎn)的應(yīng)用,正確作輔助線是解此題的關(guān)鍵,綜合性比較強(qiáng),難度適中.【變式2】(2022秋·浙江杭州·八年級(jí)校聯(lián)考階段練習(xí))如圖,在SKIPIF1<0中,SKIPIF1<0,D為邊AB的中點(diǎn),E、F分別為邊AC、BC上的點(diǎn),且SKIPIF1<0,SKIPIF1<0若SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______SKIPIF1<0,線段AB的長(zhǎng)度SKIPIF1<0______.【答案】
45
SKIPIF1<0【分析】延長(zhǎng)FD到M使得SKIPIF1<0,連接AM、EM,作SKIPIF1<0于N,先證明SKIPIF1<0,在SKIPIF1<0中求出EM,再證明SKIPIF1<0是等腰直角三角形即可解決問題.【詳解】解:如圖,延長(zhǎng)FD到M使得SKIPIF1<0,連接AM、EM,作SKIPIF1<0于N.SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.故答案為45,SKIPIF1<0.【點(diǎn)睛】本題考查全等三角形的判定和性質(zhì)、勾股定理、等腰直角三角形的判定和性質(zhì),解題的突破口是添加輔助線構(gòu)造SKIPIF1<0以及倍長(zhǎng)中線構(gòu)造全等三角形.【變式3】(2022秋·山東濱州·八年級(jí)統(tǒng)考期中)如圖,四邊形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分別找一點(diǎn)M、N,使△AMN周長(zhǎng)最小時(shí),則∠AMN+∠ANM的度數(shù)是________.【答案】120°【分析】延長(zhǎng)AB,使得AB=BE,延長(zhǎng)AD,使得AD=DF,連接EF,與BC,DC相較于M,N,要使得△AMN的周長(zhǎng)最小,則三角形的三邊要共線,根據(jù)∠BAD=120°和△AMN的內(nèi)角和是180°即可列出方程求解.【詳解】解:延長(zhǎng)AB,使得AB=BE,延長(zhǎng)AD,使得AD=DF,連接EF,與BC,DC相較于M,N如圖所示,此時(shí)△AMN的周長(zhǎng)最小∵∠ABM=90°∴∠EBM=90°在△AMB和△EMB中SKIPIF1<0∴△AMB≌△EMB∴∠BEM=∠BAM∴∠AMN=2∠BAM同理可得:△AND≌△FDN∴∠NAD=∠NFD∴∠ANM=2∠NAD設(shè)∠BAM=x,∠MAN=z,∠NAD=y∵∠BAD=120°∴SKIPIF1<0解得:SKIPIF1<0即∠AMN+∠ANM=2×60°=120°.故答案為:120°.【點(diǎn)睛】本題主要考查的是三角形周長(zhǎng)最小的條件,涉及到的知識(shí)點(diǎn)為全等三角形的判定及性質(zhì)、三角形內(nèi)角和的應(yīng)用,正確添加合適的輔助線是解題的關(guān)鍵.鞏固訓(xùn)練一、單選題1.(2020秋·湖北黃石·八年級(jí)黃石八中??计谥校┤鐖D,AD是△ABC的中線,E是AD上一點(diǎn),延長(zhǎng)BE交AC于F,若BE=AC,BF=9,CF=6,則AF的長(zhǎng)度為(
)A.1 B.1.5 C.2 D.3【答案】B【分析】延長(zhǎng)AD到G使DG=AD,連接BG,通過SAS證明△ACD≌△GBD,根據(jù)全等三角形的性質(zhì)可得到∠CAD=∠G,AC=BG,等量代換得到BE=BG,由等腰三角形的性質(zhì)得到∠G=∠BEG,推出EF=AF即可得解決問題.【詳解】解:如圖,延長(zhǎng)AD到G使DG=AD,連接BG,∵AD是△ABC的中線,∴CD=BD,在△ACD與△GBD中,SKIPIF1<0,∴△ACD≌△GBD(SAS),∴∠CAD=∠G,AC=BG,∵BE=AC,∴BE=BG,∴∠G=∠BEG,∵∠BEG=∠AEF,∴∠AEF=∠EAF.∴EF=AF,∴AF+CF=BF-EF=BF-AF,即AF+6=9-AF,∴AF=1.5.故選:B.【點(diǎn)睛】本題考查了全等三角形的判定和性質(zhì),等腰三角形的判定和性質(zhì),利用中點(diǎn)作輔助線構(gòu)造全等三角形是解題的關(guān)鍵.2.(2023·全國(guó)·九年級(jí)專題練習(xí))如圖,在四邊形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0是SKIPIF1<0的中點(diǎn),則SKIPIF1<0的長(zhǎng)為(
).A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.3【答案】C【分析】延長(zhǎng)BE交CD延長(zhǎng)線于P,可證△AEB≌△CEP,求出DP,根據(jù)勾股定理求出BP的長(zhǎng),從而求出BM的長(zhǎng).【詳解】解:延長(zhǎng)BE交CD延長(zhǎng)線于P,∵AB∥CD,∴∠EAB=∠ECP,在△AEB和△CEP中,SKIPIF1<0∴△AEB≌△CEP(ASA)∴BE=PE,CP=AB=5又∵CD=3,∴PD=2,∵SKIPIF1<0∴SKIPIF1<0∴BE=SKIPIF1<0BP=SKIPIF1<0.故選:C.【點(diǎn)睛】考查了全等三角形的判定和性質(zhì)和勾股定理,解題的關(guān)鍵是得恰當(dāng)作輔助線構(gòu)造全等,依據(jù)勾股定理求出BP.3.(2021春·浙江杭州·八年級(jí)杭州外國(guó)語(yǔ)學(xué)校??计谥校┤鐖D,在?ABCD中,BE垂直平分CD于點(diǎn)E,且∠BAD=45°,AD=3,則?ABCD的對(duì)角線AC的長(zhǎng)為()A.SKIPIF1<0 B.5SKIPIF1<0 C.5SKIPIF1<0 D.2SKIPIF1<0【答案】A【分析】過C作CF⊥AB,交AB延長(zhǎng)線于點(diǎn)F,連接BD,根據(jù)菱形的性質(zhì)可知BC=BD=AD=3,由∠BAD=45°可知∠ABD=45°,∠ADB=90°,依據(jù)勾股定理,在Rt△ABD中,AB=SKIPIF1<0AD=SKIPIF1<0,由∠CBF=∠DAB=45°,∠F=90°得出FC=FB=SKIPIF1<0,在Rt△ACF中,根據(jù)勾股定理即可求出AC=SKIPIF1<0.【詳解】解:如圖所示,過C作CF⊥AB,交AB延長(zhǎng)線于點(diǎn)F,連接BD,∵在?ABCD中,BE垂直平分CD于點(diǎn)E,∴BC=BD=AD=3,又∵∠BAD=45°,∴∠ABD=45°,∠ADB=90°,∴Rt△ABD中,AB=SKIPIF1<0AD=SKIPIF1<0,∵∠CBF=∠DAB=45°,∠F=90°,∴∠BCF=45°,∴FC=FB=SKIPIF1<0,∴Rt△ACF中,SKIPIF1<0,故選:A.【點(diǎn)睛】本題考查平行四邊形的性質(zhì)、勾股定理、線段垂直平分線的性質(zhì),解題的關(guān)鍵是熟練掌握相關(guān)性質(zhì)..4.(2022秋·浙江寧波·八年級(jí)校聯(lián)考期中)如圖,O為數(shù)軸原點(diǎn),A,B兩點(diǎn)分別對(duì)應(yīng)SKIPIF1<0、3,作腰長(zhǎng)為4的等腰SKIPIF1<0,連接SKIPIF1<0,以O(shè)為圓心,SKIPIF1<0長(zhǎng)為半徑畫弧交數(shù)軸于點(diǎn)M,則點(diǎn)M對(duì)應(yīng)的實(shí)數(shù)為()A.SKIPIF1<0 B.4 C.SKIPIF1<0 D.2.5【答案】A【分析】先利用數(shù)軸的性質(zhì),得到SKIPIF1<0,再根據(jù)等腰三角形的性質(zhì)得到SKIPIF1<0,SKIPIF1<0,由勾股定理得到SKIPIF1<0,最后利用畫法得到SKIPIF1<0,即可得到答案.【詳解】解:SKIPIF1<0為數(shù)軸原點(diǎn),A,B兩點(diǎn)分別對(duì)應(yīng)SKIPIF1<0、3,SKIPIF1<0,SKIPIF1<0是腰長(zhǎng)為4的等腰三角形,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0以O(shè)為圓心,SKIPIF1<0長(zhǎng)為半徑畫弧交數(shù)軸于點(diǎn)M,SKIPIF1<0,SKIPIF1<0點(diǎn)M對(duì)應(yīng)的實(shí)數(shù)為SKIPIF1<0,故選A.【點(diǎn)睛】本題考查了等腰三角形的性質(zhì),勾股定理等知識(shí),熟練掌握等腰三角形三線合一的性質(zhì)是解題關(guān)鍵.5.(2023秋·廣東惠州·八年級(jí)??计谀┤鐖D,在SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0于點(diǎn)SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0為SKIPIF1<0上一動(dòng)點(diǎn).若SKIPIF1<0腰上的中線長(zhǎng)是3.則SKIPIF1<0周長(zhǎng)的最小值為()A.4 B.5 C.6 D.7【答案】B【分析】連接SKIPIF1<0,則SKIPIF1<0的長(zhǎng)度即為SKIPIF1<0與SKIPIF1<0和的最小值,求出SKIPIF1<0的長(zhǎng),可得結(jié)論.【詳解】解:如連接SKIPIF1<0,與SKIPIF1<0交于點(diǎn)SKIPIF1<0,此時(shí)SKIPIF1<0最小SKIPIF1<0,SKIPIF1<0是等腰三角形,SKIPIF1<0是中線,SKIPIF1<0于點(diǎn)D,SKIPIF1<0為SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0的長(zhǎng)就是SKIPIF1<0的最小值,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的最小值是3,SKIPIF1<0周長(zhǎng)的最小值SKIPIF1<0,故選:B.【點(diǎn)睛】本題考查的是最短線路問題及等邊三角形的性質(zhì),解題的關(guān)鍵是熟知兩點(diǎn)之間線段最短的知識(shí).6.(2022秋·江蘇無錫·八年級(jí)校聯(lián)考期中)如圖,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)D是BC的中點(diǎn),將SKIPIF1<0沿AD翻折得到SKIPIF1<0,連結(jié)BE,則線段BE的長(zhǎng)為()A.2 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】延長(zhǎng)AD交CE于點(diǎn)O,過點(diǎn)A作SKIPIF1<0于H,根據(jù)SKIPIF1<0運(yùn)用勾股定理求出BC的長(zhǎng),利用SKIPIF1<0的面積求出AH的長(zhǎng),證明AD垂直平分線段CE,運(yùn)用SKIPIF1<0與SKIPIF1<0面積相等求出OC的長(zhǎng),推出CE的長(zhǎng),證明SKIPIF1<0是直角三角形,在SKIPIF1<0中,利用勾股定理即可解決問題.【詳解】延長(zhǎng)AD交CE于點(diǎn)O,過點(diǎn)A作SKIPIF1<0于點(diǎn)H,在SKIPIF1<0中,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴AD垂直平分線段CE,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0是直角三角形,在SKIPIF1<0中,SKIPIF1<0.故選:D.【點(diǎn)睛】本題主要考查了翻折變換,直角三角形的斜邊中線,勾股定理等,解題的關(guān)鍵是添加輔助線,熟練掌握翻折性質(zhì),直角三角形的斜邊中線的性質(zhì),三線合一,勾股定理解直角三角形,面積法求高.7.(2023秋·四川雅安·九年級(jí)??计谥校┤鐖D,在SKIPIF1<0中,點(diǎn)SKIPIF1<0分別是邊SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0是線段SKIPIF1<0上的一點(diǎn),連接SKIPIF1<0,SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度食品出口銷售合同標(biāo)準(zhǔn)范本3篇
- 二零二五年節(jié)能照明設(shè)備銷售合作協(xié)議3篇
- 二零二五版建筑廢棄物資源化利用與處理合同3篇
- 二零二五年度汽車買賣及售后服務(wù)合同范本3篇
- 二零二五版新型采購(gòu)監(jiān)控設(shè)備采購(gòu)與維護(hù)服務(wù)協(xié)議3篇
- 2025年國(guó)有企業(yè)廠長(zhǎng)任期目標(biāo)責(zé)任書及薪酬激勵(lì)機(jī)制合同3篇
- 二零二五年度高空橋梁檢修作業(yè)安全協(xié)議書2篇
- 二零二五版技術(shù)專利權(quán)轉(zhuǎn)讓與產(chǎn)業(yè)鏈協(xié)同創(chuàng)新與市場(chǎng)拓展服務(wù)協(xié)議3篇
- 2025年度餐廳裝修設(shè)計(jì)與施工合同2篇
- 2瓷磚銷售合同2024年版
- mil-std-1916抽樣標(biāo)準(zhǔn)(中文版)
- 2024年安徽省合肥市瑤海區(qū)中考語(yǔ)文一模試卷
- 單位車輛變更名稱的委托書
- 粉塵外協(xié)單位清理協(xié)議書
- 2023年12月首都醫(yī)科大學(xué)附屬北京中醫(yī)醫(yī)院面向應(yīng)屆生招考聘用筆試近6年高頻考題難、易錯(cuò)點(diǎn)薈萃答案帶詳解附后
- 茶室經(jīng)營(yíng)方案
- 軍隊(duì)文職崗位述職報(bào)告
- 小學(xué)數(shù)學(xué)六年級(jí)解方程練習(xí)300題及答案
- 電抗器噪聲控制與減振技術(shù)
- 中醫(yī)健康宣教手冊(cè)
- 2024年江蘇揚(yáng)州市高郵市國(guó)有企業(yè)招聘筆試參考題庫(kù)附帶答案詳解
評(píng)論
0/150
提交評(píng)論