2023-2024學年安徽省六安市皋城中學中考數學模試卷含解析_第1頁
2023-2024學年安徽省六安市皋城中學中考數學模試卷含解析_第2頁
2023-2024學年安徽省六安市皋城中學中考數學模試卷含解析_第3頁
2023-2024學年安徽省六安市皋城中學中考數學模試卷含解析_第4頁
2023-2024學年安徽省六安市皋城中學中考數學模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年安徽省六安市皋城中學中考數學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列各式:①a0=1②a2·a3=a5③2–2=–④–(3-5)+(–2)4÷8×(–1)=0⑤x2+x2=2x2,其中正確的是()A.①②③ B.①③⑤ C.②③④ D.②④⑤2.在海南建省辦經濟特區(qū)30周年之際,中央決定創(chuàng)建海南自貿區(qū)(港),引發(fā)全球高度關注.據統(tǒng)計,4月份互聯網信息中提及“海南”一詞的次數約48500000次,數據48500000科學記數法表示為()A.485×105B.48.5×106C.4.85×107D.0.485×1083.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.4.不論x、y為何值,用配方法可說明代數式x2+4y2+6x﹣4y+11的值()A.總不小于1B.總不小于11C.可為任何實數D.可能為負數5.搶微信紅包成為節(jié)日期間人們最喜歡的活動之一.對某單位50名員工在春節(jié)期間所搶的紅包金額進行統(tǒng)計,并繪制成了統(tǒng)計圖.根據如圖提供的信息,紅包金額的眾數和中位數分別是()A.20,20 B.30,20 C.30,30 D.20,306.在“大家跳起來”的鄉(xiāng)村學校舞蹈比賽中,某校10名學生參賽成績統(tǒng)計如圖所示.對于這10名學生的參賽成績,下列說法中錯誤的是()A.眾數是90 B.中位數是90 C.平均數是90 D.極差是157.不透明的袋子中裝有形狀、大小、質地完全相同的6個球,其中4個黑球、2個白球,從袋子中一次摸出3個球,下列事件是不可能事件的是()A.摸出的是3個白球 B.摸出的是3個黑球C.摸出的是2個白球、1個黑球 D.摸出的是2個黑球、1個白球8.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.有一個實數根 D.無實數根9.滿足不等式組的整數解是()A.﹣2 B.﹣1 C.0 D.110.不等式組的解在數軸上表示為()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.計算:2a×(﹣2b)=_____.12.如圖,這是一幅長為3m,寬為1m的長方形世界杯宣傳畫,為測量宣傳畫上世界杯圖案的面積,現將宣傳畫平鋪在地上,向長方形宣傳畫內隨機投擲骰子(假設骰子落在長方形內的每一點都是等可能的),經過大量重復投擲試驗,發(fā)現骰子落在世界杯圖案中的頻率穩(wěn)定在常數0.4附近,由此可估計宣傳畫上世界杯圖案的面積約為___________________m1.13.已知a+1a=3,則a14.在函數y=x-1的表達式中,自變量x的取值范圍是.15.親愛的同學們,在我們的生活中處處有數學的身影.請看圖,折疊一張三角形紙片,把三角形的三個角拼在一起,就得到一個著名的幾何定理,請你寫出這一定理的結論:“三角形的三個內角和等于_______°.”16.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.17.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.三、解答題(共7小題,滿分69分)18.(10分)在星期一的第八節(jié)課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統(tǒng)計分析,繪制了頻數分布表和統(tǒng)計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統(tǒng)計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統(tǒng)計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、?。┲?,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.19.(5分)制作一種產品,需先將材料加熱達到60℃后,再進行操作,設該材料溫度為y(℃)從加熱開始計算的時間為x(min).據了解,當該材料加熱時,溫度y與時間x成一次函數關系:停止加熱進行操作時,溫度y與時間x成反比例關系(如圖).已知在操作加熱前的溫度為15℃,加熱5分鐘后溫度達到60℃.分別求出將材料加熱和停止加熱進行操作時,y與x的函數關系式;根據工藝要求,當材料的溫度低于15℃時,須停止操作,那么從開始加熱到停止操作,共經歷了多少時間?20.(8分)某高校學生會在某天午餐后,隨機調查了部分同學就餐飯菜的剩余情況,并將結果統(tǒng)計后繪制成了如圖所示的不完整的統(tǒng)計圖.(1)這次被調查的同學共有名;(2)補全條形統(tǒng)計圖;(3)計算在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數;(4)校學生會通過數據分析,估計這次被調查的所有學生一餐浪費的食物可以供200人用一餐.據此估算,該校20000名學生一餐浪費的食物可供多少人食用一餐?21.(10分)為了預防“甲型H1N1”,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據題中提供的信息,解答下列問題:藥物燃燒時,求y關于x的函數關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數關系式呢?研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室,那么從消毒開始,至少需要幾分鐘后,學生才能進入教室?研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?22.(10分)在第23個世界讀書日前夕,我市某中學為了解本校學生的每周課外閱讀時間用t表示,單位:小時,采用隨機抽樣的方法進行問卷調查,調查結果按,,,分為四個等級,并依次用A,B,C,D表示,根據調查結果統(tǒng)計的數據,繪制成了如圖所示的兩幅不完整的統(tǒng)計圖,由圖中給出的信息解答下列問題:求本次調查的學生人數;求扇形統(tǒng)計圖中等級B所在扇形的圓心角度數,并把條形統(tǒng)計圖補充完整;若該校共有學生1200人,試估計每周課外閱讀時間滿足的人數.23.(12分)新農村社區(qū)改造中,有一部分樓盤要對外銷售.某樓盤共23層,銷售價格如下:第八層樓房售價為4000元/米2,從第八層起每上升一層,每平方米的售價提高50元;反之,樓層每下降一層,每平方米的售價降低30元,已知該樓盤每套房面積均為120米2.若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:降價8%,另外每套房贈送a元裝修基金;降價10%,沒有其他贈送.請寫出售價y(元/米2)與樓層x(1≤x≤23,x取整數)之間的函數表達式;老王要購買第十六層的一套房,若他一次性付清所有房款,請幫他計算哪種優(yōu)惠方案更加合算.24.(14分)如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC、BC.(1)試判斷直線CD與⊙O的位置關系,并說明理由;(2)若AD=2,AC=,求AB的長.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據實數的運算法則即可一一判斷求解.【詳解】①有理數的0次冪,當a=0時,a0=0;②為同底數冪相乘,底數不變,指數相加,正確;③中2–2=,原式錯誤;④為有理數的混合運算,正確;⑤為合并同類項,正確.故選D.2、C【解析】

依據科學記數法的含義即可判斷.【詳解】解:48511111=4.85×117,故本題選擇C.【點睛】把一個數M記成a×11n(1≤|a|<11,n為整數)的形式,這種記數的方法叫做科學記數法.規(guī)律:(1)當|a|≥1時,n的值為a的整數位數減1;(2)當|a|<1時,n的值是第一個不是1的數字前1的個數,包括整數位上的1.3、C【解析】

作MH⊥AC于H,如圖,根據正方形的性質得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據角平分線性質得BM=MH=,則AB=2+,于是利用正方形的性質得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質:在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.也考查了角平分線的性質和正方形的性質.4、A【解析】

利用配方法,根據非負數的性質即可解決問題;【詳解】解:∵x2+4y2+6x-4y+11=(x+3)2+(2y-1)2+1,

又∵(x+3)2≥0,(2y-1)2≥0,

∴x2+4y2+6x-4y+11≥1,

故選:A.【點睛】本題考查配方法的應用,非負數的性質等知識,解題的關鍵是熟練掌握配方法.5、C【解析】

根據眾數和中位數的定義,出現次數最多的那個數就是眾數,把一組數據按照大小順序排列,中間那個數或中間兩個數的平均數叫中位數.【詳解】捐款30元的人數為20人,最多,則眾數為30,中間兩個數分別為30和30,則中位數是30,故選C.【點睛】本題考查了條形統(tǒng)計圖、眾數和中位數,這是基礎知識要熟練掌握.6、C【解析】

由統(tǒng)計圖中提供的數據,根據眾數、中位數、平均數、極差的定義分別列出算式,求出答案:【詳解】解:∵90出現了5次,出現的次數最多,∴眾數是90;∵共有10個數,∴中位數是第5、6個數的平均數,∴中位數是(90+90)÷2=90;∵平均數是(80×1+85×2+90×5+95×2)÷10=89;極差是:95﹣80=1.∴錯誤的是C.故選C.7、A【解析】由題意可知,不透明的袋子中總共有2個白球,從袋子中一次摸出3個球都是白球是不可能事件,故選B.8、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數根,故選B9、C【解析】

先求出每個不等式的解集,再根據不等式的解集求出不等式組的解集即可.【詳解】∵解不等式①得:x≤0.5,解不等式②得:x>-1,∴不等式組的解集為-1<x≤0.5,∴不等式組的整數解為0,故選C.【點睛】本題考查了解一元一次不等式組和不等式組的整數解,能根據不等式的解集找出不等式組的解集是解此題的關鍵.10、C【解析】

先解每一個不等式,再根據結果判斷數軸表示的正確方法.【詳解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴數軸表示的正確方法為C.故選C.【點睛】考核知識點:解不等式組.二、填空題(共7小題,每小題3分,滿分21分)11、﹣4ab【解析】

根據單項式與單項式的乘法解答即可.【詳解】2a×(﹣2b)=﹣4ab.故答案為﹣4ab.【點睛】本題考查了單項式的乘法,關鍵是根據單項式的乘法法則解答.12、1.4【解析】

由概率估計圖案在整副畫中所占比例,再求出圖案的面積.【詳解】估計宣傳畫上世界杯圖案的面積約為3×1×0.4=1.4m1.故答案為1.4【點睛】本題考核知識點:幾何概率.解題關鍵點:由幾何概率估計圖案在整副畫中所占比例.13、7【解析】

根據完全平方公式可得:原式=(a+114、x≥1.【解析】

根據被開方數大于等于0列式計算即可得解.【詳解】根據題意得,x﹣1≥0,解得x≥1.故答案為x≥1.【點睛】本題考查函數自變量的取值范圍,知識點為:二次根式的被開方數是非負數.15、1【解析】本題主要考查了三角形的內角和定理.解:根據三角形的內角和可知填:1.16、【解析】

如圖,作OH⊥CD于H,連結OC,根據垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據含30°的直角三角形的性質計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質,解此題的關鍵在于作輔助線得到直角三角形,再合理利用各知識點進行計算即可17、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質,全等三角形的判定性質,勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據另一邊的取值情況確定第三邊的最大值或最小值.三、解答題(共7小題,滿分69分)18、(1)80,12,28;(2)36°;(3)140人;(4)【解析】

(1)用D組的頻數除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到甲和乙的結果數,然后根據概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數共有140人;(4)畫樹狀圖如下:共12種等可能的結果數,其中恰好抽到甲和乙的結果數為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.也考查了統(tǒng)計圖.19、(1);(2)20分鐘.【解析】

(1)材料加熱時,設y=ax+15(a≠0),由題意得60=5a+15,解得a=9,則材料加熱時,y與x的函數關系式為y=9x+15(0≤x≤5).停止加熱時,設y=(k≠0),由題意得60=,解得k=300,則停止加熱進行操作時y與x的函數關系式為y=(x≥5);(2)把y=15代入y=,得x=20,因此從開始加熱到停止操作,共經歷了20分鐘.答:從開始加熱到停止操作,共經歷了20分鐘.20、(1)1000(2)200(3)54°(4)4000人【解析】試題分析:(1)根據沒有剩飯的人數是400人,所占的百分比是40%,據此即可求得調查的總人數;(2)利用(1)中求得結果減去其它組的人數即可求得剩少量飯的人數,從而補全直方圖;(3)利用360°乘以對應的比例即可求解;(4)利用20000除以調查的總人數,然后乘以200即可求解.試題解析:(1)被調查的同學的人數是400÷40%=1000(名);(2)剩少量的人數是1000-400-250-150=200(名),;(3)在扇形統(tǒng)計圖中剩大量飯菜所對應扇形圓心角的度數是:360°×1501000(4)200001000答:校20000名學生一餐浪費的食物可供4000人食用一餐.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用,讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數據;扇形統(tǒng)計圖直接反映部分占總體的百分比大?。?1、(1);(2)至少需要30分鐘后生才能進入教室.(3)這次消毒是有效的.【解析】

(1)藥物燃燒時,設出y與x之間的解析式y(tǒng)=k1x,把點(8,6)代入即可,從圖上讀出x的取值范圍;藥物燃燒后,設出y與x之間的解析式y(tǒng)=,把點(8,6)代入即可;(2)把y=1.6代入反比例函數解析式,求出相應的x;(3)把y=3代入正比例函數解析式和反比例函數解析式,求出相應的x,兩數之差與10進行比較,大于或等于10就有效.【詳解】解:(1)設藥物燃燒時y關于x的函數關系式為y=k1x(k1>0)代入(8,6)為6=8k1∴k1=設藥物燃燒后y關于x的函數關系式為y=(k2>0)代入(8,6)為6=,∴k2=48∴藥物燃燒時y關于x的函數關系式為(0≤x≤8)藥物燃燒后y關于x的函數關系式為(x>8)∴(2)結合實際,令中y≤1.6得x≥30即從消毒開始,至少需要30分鐘后生才能進入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以這次消毒是有效的.【點睛】現實生活中存在大量成反比例函數的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數關系,然后利用待定系數法求出它們的關系式.22、本次調查的學生人數為200人;B所在扇形的圓心角為,補全條形圖見解析;全校每周課外閱讀時間滿足的約有360人.【解析】【分析】根據等級A的人數及所占百分比即可得出調查學生人數;先計算出C在扇形圖中的百分比,用在扇形圖中的百分比可計算出B在扇形圖中的百分比,再計算出B在扇形的圓心角;總人數課外閱讀時間滿足的百分比即得所求.【詳解】由條形圖知,A級的人數為20人,由扇形圖知:A級人數占總調查人數的,所以:人,即本次調查的學生人數為200人;由條形圖知:C級的人數為60人,所以C級所占的百分比為:,B級所占的百分比為:,B級的人數為人,D級的人數為:人,B所在扇形的圓心角為:,補全條形圖如圖所示:;因為C級所占的百分比為,所以全

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論