![2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題含解析_第1頁](http://file4.renrendoc.com/view2/M00/05/10/wKhkFmYEpqOAZGqiAAI5-noLk3I085.jpg)
![2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題含解析_第2頁](http://file4.renrendoc.com/view2/M00/05/10/wKhkFmYEpqOAZGqiAAI5-noLk3I0852.jpg)
![2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題含解析_第3頁](http://file4.renrendoc.com/view2/M00/05/10/wKhkFmYEpqOAZGqiAAI5-noLk3I0853.jpg)
![2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題含解析_第4頁](http://file4.renrendoc.com/view2/M00/05/10/wKhkFmYEpqOAZGqiAAI5-noLk3I0854.jpg)
![2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題含解析_第5頁](http://file4.renrendoc.com/view2/M00/05/10/wKhkFmYEpqOAZGqiAAI5-noLk3I0855.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年寧德市重點中學中考數(shù)學適應性模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.1202.將拋物線y=x2向左平移2個單位,再向下平移5個單位,平移后所得新拋物線的表達式為()A.y=(x+2)2﹣5B.y=(x+2)2+5C.y=(x﹣2)2﹣5D.y=(x﹣2)2+53.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.4.等式組的解集在下列數(shù)軸上表示正確的是(
).A.
B.C.
D.5.一艘輪船和一艘漁船同時沿各自的航向從港口O出發(fā),如圖所示,輪船從港口O沿北偏西20°的方向行60海里到達點M處,同一時刻漁船已航行到與港口O相距80海里的點N處,若M、N兩點相距100海里,則∠NOF的度數(shù)為()A.50° B.60° C.70° D.80°6.在一幅長,寬的矩形風景畫的四周鑲一條金色紙邊,制成一幅矩形掛圖,如圖所示,如果要使整幅掛圖的面積是,設金色紙邊的寬為,那么滿足的方程是()A. B.C. D.7.等腰三角形三邊長分別為,且是關于的一元二次方程的兩根,則的值為()A.9 B.10 C.9或10 D.8或108.下列說法:①-102②數(shù)軸上的點與實數(shù)成一一對應關系;③﹣2是16的平方根;④任何實數(shù)不是有理數(shù)就是無理數(shù);⑤兩個無理數(shù)的和還是無理數(shù);⑥無理數(shù)都是無限小數(shù),其中正確的個數(shù)有()A.2個 B.3個 C.4個 D.5個9.如圖,在平面直角坐標系中,⊙P的圓心坐標是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.10.如圖,在已知的△ABC中,按以下步驟作圖:①分別以B、C為圓心,以大于BC的長為半徑作弧,兩弧相交于點M、N;②作直線MN交AB于點D,連接CD,則下列結論正確的是()A.CD+DB=AB B.CD+AD=AB C.CD+AC=AB D.AD+AC=AB11.在下列四個圖案中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C.. D.12.如果,那么()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.分解因式______.14.如圖,是用三角形擺成的圖案,擺第一層圖需要1個三角形,擺第二層圖需要3個三角形,擺第三層圖需要7個三角形,擺第四層圖需要13個三角形,擺第五層圖需要21個三角形,…,擺第n層圖需要_____個三角形.15.如果正比例函數(shù)的圖像經(jīng)過第一、三象限,那么的取值范圍是__.16.某種水果的售價為每千克a元,用面值為50元的人民幣購買了3千克這種水果,應找回元(用含a的代數(shù)式表示).17.如圖,某數(shù)學興趣小組為了測量河對岸l1的兩棵古樹A、B之間的距離,他們在河這邊沿著與AB平行的直線l2上取C、D兩點,測得∠ACB=15°,∠ACD=45°,若l1、l2之間的距離為50m,則古樹A、B之間的距離為_____m.18.如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,點D為AB的中點,將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,則D′B長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據(jù)調查結果繪制了如圖所示的尚不完整的統(tǒng)計圖:根據(jù)以上統(tǒng)計圖,解答下列問題:本次接受調查的市民共有人;扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)是;請補全條形統(tǒng)計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數(shù).20.(6分)如圖所示,在中,,用尺規(guī)在邊BC上求作一點P,使;(不寫作法,保留作圖痕跡)連接AP當為多少度時,AP平分.21.(6分)計算:.22.(8分)已知:如圖,在正方形ABCD中,點E、F分別在BC和CD上,AE=AF.求證:BE=DF;連接AC交EF于點O,延長OC至點M,使OM=OA,連接EM、FM.判斷四邊形AEMF是什么特殊四邊形?并證明你的結論.23.(8分)如圖,已知點D、E為△ABC的邊BC上兩點.AD=AE,BD=CE,為了判斷∠B與∠C的大小關系,請你填空完成下面的推理過程,并在空白括號內注明推理的依據(jù).解:過點A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知)AH⊥BC(所作)∴DH=EH(等腰三角形底邊上的高也是底邊上的中線)又∵BD=CE(已知)∴BD+DH=CE+EH(等式的性質)即:BH=又∵(所作)∴AH為線段的垂直平分線∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等)∴(等邊對等角)24.(10分)在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.25.(10分)甲、乙兩個商場出售相同的某種商品,每件售價均為3000元,并且多買都有一定的優(yōu)惠.甲商場的優(yōu)惠條件是:第一件按原售價收費,其余每件優(yōu)惠30%;乙商場的優(yōu)惠條件是:每件優(yōu)惠25%.設所買商品為x件時,甲商場收費為y1元,乙商場收費為y2元.分別求出y1,y2與x之間的關系式;當甲、乙兩個商場的收費相同時,所買商品為多少件?當所買商品為5件時,應選擇哪個商場更優(yōu)惠?請說明理由.26.(12分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).27.(12分)如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.求證:(1)△ABE≌△CDF;四邊形BFDE是平行四邊形.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
由tanA的值,利用銳角三角函數(shù)定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據(jù)勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數(shù)定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.2、A【解析】
直接根據(jù)“上加下減,左加右減”的原則進行解答即可.【詳解】拋物線y=x2的頂點坐標為(0,0),先向左平移2個單位再向下平移1個單位后的拋物線的頂點坐標為(﹣2,﹣1),所以,平移后的拋物線的解析式為y=(x+2)2﹣1.故選:A.【點睛】本題考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答本題的關鍵.3、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.4、B【解析】【分析】分別求出每一個不等式的解集,然后在數(shù)軸上表示出每個不等式的解集,對比即可得.【詳解】,解不等式①得,x>-3,解不等式②得,x≤2,在數(shù)軸上表示①、②的解集如圖所示,故選B.【點睛】本題考查了解一元一次不等式組,在數(shù)軸上表示不等式的解集,不等式的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),數(shù)軸上的點把數(shù)軸分成若干段,如果數(shù)軸的某一段上面表示解集的線的條數(shù)與不等式的個數(shù)一樣,那么這段就是不等式組的解集.有幾個就要幾個.在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.5、C【解析】
解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故選C.【點睛】本題考查直角三角形的判定,掌握方位角的定義及勾股定理逆定理是本題的解題關鍵.6、B【解析】
根據(jù)矩形的面積=長×寬,我們可得出本題的等量關系應該是:(風景畫的長+2個紙邊的寬度)×(風景畫的寬+2個紙邊的寬度)=整個掛圖的面積,由此可得出方程.【詳解】由題意,設金色紙邊的寬為,得出方程:(80+2x)(50+2x)=5400,整理后得:故選:B.【點睛】本題主要考查了由實際問題得出一元二次方程,對于面積問題應熟記各種圖形的面積公式,然后根據(jù)等量關系列出方程是解題關鍵.7、B【解析】
由題意可知,等腰三角形有兩種情況:當a,b為腰時,a=b,由一元二次方程根與系數(shù)的關系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;當2為腰時,a=2(或b=2),此時2+b=6(或a+2=6),解得b=4(a=4),這時三邊為2,2,4,不符合三角形三邊關系:兩邊之和大于第三邊,兩邊之差小于第三邊,故不合題意.所以n只能為1.故選B8、C【解析】
根據(jù)平方根,數(shù)軸,有理數(shù)的分類逐一分析即可.【詳解】①∵-102=10,∴②數(shù)軸上的點與實數(shù)成一一對應關系,故說法正確;③∵16=4,故-2是16的平方根,故說法正確;④任何實數(shù)不是有理數(shù)就是無理數(shù),故說法正確;⑤兩個無理數(shù)的和還是無理數(shù),如2和-2⑥無理數(shù)都是無限小數(shù),故說法正確;故正確的是②③④⑥共4個;故選C.【點睛】本題考查了有理數(shù)的分類,數(shù)軸及平方根的概念,有理數(shù)都可以化為小數(shù),其中整數(shù)可以看作小數(shù)點后面是零的小數(shù),分數(shù)可以化為有限小數(shù)或無限循環(huán)小數(shù);無理數(shù)是無限不循環(huán)小數(shù),其中有開方開不盡的數(shù),如2,9、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結PB,如圖,∵⊙P的圓心坐標是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標特征;3.勾股定理.10、B【解析】
作弧后可知MN⊥CB,且CD=DB.【詳解】由題意性質可知MN是BC的垂直平分線,則MN⊥CB,且CD=DB,則CD+AD=AB.【點睛】了解中垂線的作圖規(guī)則是解題的關鍵.11、B【解析】試題分析:根據(jù)軸對稱圖形和中心對稱圖形的定義:如果一個平面圖形沿一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形;中心對稱圖形的定義:把一個圖形繞著某一個點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心,因此:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;B、是軸對稱圖形,也是中心對稱圖形,符合題意;C、不是軸對稱圖形,也不是中心對稱圖形,不符合題意;D、是軸對稱圖形,不是中心對稱圖形,不符合題意.故選B.考點:軸對稱圖形和中心對稱圖形12、B【解析】試題分析:根據(jù)二次根式的性質,由此可知2-a≥0,解得a≤2.故選B點睛:此題主要考查了二次根式的性質,解題關鍵是明確被開方數(shù)的符號,然后根據(jù)性質可求解.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(x+y+z)(x﹣y﹣z).【解析】
當被分解的式子是四項時,應考慮運用分組分解法進行分解.本題后三項可以為一組組成完全平方式,再用平方差公式即可.【詳解】x2-y2-z2-2yz,=x2-(y2+z2+2yz),=x2-(y+z)2,=(x+y+z)(x-y-z).故答案為(x+y+z)(x-y-z).【點睛】本題考查了用分組分解法進行因式分解.難點是采用兩兩分組還是三一分組.本題后三項可組成完全平方公式,可把后三項分為一組.14、n2﹣n+1【解析】
觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為3,比第1層多2個;第3層三角形的個數(shù)為7,比第2層多4個;…可得,每一層比上一層多的個數(shù)依次為2,4,6,…據(jù)此作答.【詳解】觀察可得,第1層三角形的個數(shù)為1,第2層三角形的個數(shù)為22?2+1=3,第3層三角形的個數(shù)為32?3+1=7,第四層圖需要42?4+1=13個三角形擺第五層圖需要52?5+1=21.那么擺第n層圖需要n2?n+1個三角形。故答案為:n2?n+1.【點睛】本題考查了規(guī)律型:圖形的變化類,解題的關鍵是由圖形得到一般規(guī)律.15、k>1【解析】
根據(jù)正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限得出k的取值范圍即可.【詳解】因為正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限,所以k-1>0,解得:k>1,故答案為:k>1.【點睛】此題考查一次函數(shù)問題,關鍵是根據(jù)正比例函數(shù)y=(k-1)x的圖象經(jīng)過第一、三象限解答.16、(50-3a).【解析】試題解析:∵購買這種售價是每千克a元的水果3千克需3a元,∴根據(jù)題意,應找回(50-3a)元.考點:列代數(shù)式.17、(50﹣).【解析】
過點A作AM⊥DC于點M,過點B作BN⊥DC于點N.則AM=BN.通過解直角△ACM和△BCN分別求得CM、CN的長度,則易得MN=AB.【詳解】解:如圖,過點A作AM⊥DC于點M,過點B作BN⊥DC于點N,則AB=MN,AM=BN.在直角△ACM,∵∠ACM=45°,AM=50m,∴CM=AM=50m.∵在直角△BCN中,∠BCN=∠ACB+∠ACD=60°,BN=50m,∴CN===(m),∴MN=CM?CN=50?(m).則AB=MN=(50?)m.故答案是:(50?).【點睛】本題考查了解直角三角形的應用.解決此問題的關鍵在于正確理解題意的基礎上建立數(shù)學模型,把實際問題轉化為數(shù)學問題.18、.【解析】
試題分析:解:∵在Rt△ABC中,∠ACB=90°,AC=4,BC=3,∴AB=5,∵點D為AB的中點,∴CD=AD=BD=AB=2.5,過D′作D′E⊥BC,∵將△ACD繞著點C逆時針旋轉,使點A落在CB的延長線A′處,點D落在點D′處,∴CD′=AD=A′D′,∴D′E==1.5,∵A′E=CE=2,BC=3,∴BE=1,∴BD′=,故答案為.考點:旋轉的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)1;(2)43.2°;(3)條形統(tǒng)計圖如圖所示:見解析;(4)估計乘公交車上班的人數(shù)為6萬人.【解析】
(1)根據(jù)D組人數(shù)以及百分比計算即可.(2)根據(jù)圓心角度數(shù)=360°×百分比計算即可.(3)求出A,C兩組人數(shù)畫出條形圖即可.(4)利用樣本估計總體的思想解決問題即可.【詳解】(1)本次接受調查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統(tǒng)計圖中,扇形B的圓心角度數(shù)=360°×=43.2°;故答案為:43.2°(3)C組人數(shù)=1×40%=80(人),A組人數(shù)=1﹣24﹣80﹣50﹣16=30(人).條形統(tǒng)計圖如圖所示:(4)15×40%=6(萬人).答:估計乘公交車上班的人數(shù)為6萬人.【點睛】本題考查條形統(tǒng)計圖,扇形統(tǒng)計圖,樣本估計總體等知識,解題的關鍵是熟練掌握基本知識,屬于中考??碱}型.20、(1)詳見解析;(2)30°.【解析】
(1)根據(jù)線段垂直平分線的作法作出AB的垂直平分線即可;(2)連接PA,根據(jù)等腰三角形的性質可得,由角平分線的定義可得,根據(jù)直角三角形兩銳角互余的性質即可得∠B的度數(shù),可得答案.【詳解】(1)如圖所示:分別以A、B為圓心,大于AB長為半徑畫弧,兩弧相交于點E、F,作直線EF,交BC于點P,∵EF為AB的垂直平分線,∴PA=PB,∴點P即為所求.(2)如圖,連接AP,∵,∴,∵AP是角平分線,∴,∴,∵,∴∠PAC+∠PAB+∠B=90°,∴3∠B=90°,解得:∠B=30°,∴當時,AP平分.【點睛】本題考查尺規(guī)作圖,考查了垂直平分線的性質、直角三角形兩銳角互余的性質及等腰三角形的性質,線段垂直平分線上的點到線段兩端的距離相等;熟練掌握垂直平分線的性質是解題關鍵.21、【解析】
直接利用負整數(shù)指數(shù)冪的性質以及絕對值的性質、零指數(shù)冪的性質以及特殊角的三角函數(shù)值化簡進而得出答案.【詳解】原式=9﹣2+1﹣2=.【點睛】本題考查了實數(shù)運算,正確化簡各數(shù)是解題的關鍵.22、(1)證明見解析;(2)四邊形AEMF是菱形,證明見解析.【解析】
(1)求簡單的線段相等,可證線段所在的三角形全等,即證△ABE≌△ADF;(2)由于四邊形ABCD是正方形,易得∠ECO=∠FCO=45°,BC=CD;聯(lián)立(1)的結論,可證得EC=CF,根據(jù)等腰三角形三線合一的性質可證得OC(即AM)垂直平分EF;已知OA=OM,則EF、AM互相平分,再根據(jù)一組鄰邊相等的平行四邊形是菱形,即可判定四邊形AEMF是菱形.【詳解】(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠B=∠D=90°,在Rt△ABE和Rt△ADF中,∵,∴Rt△ADF≌Rt△ABE(HL)∴BE=DF;(2)四邊形AEMF是菱形,理由為:證明:∵四邊形ABCD是正方形,∴∠BCA=∠DCA=45°(正方形的對角線平分一組對角),BC=DC(正方形四條邊相等),∵BE=DF(已證),∴BC-BE=DC-DF(等式的性質),即CE=CF,在△COE和△COF中,,∴△COE≌△COF(SAS),∴OE=OF,又OM=OA,∴四邊形AEMF是平行四邊形(對角線互相平分的四邊形是平行四邊形),∵AE=AF,∴平行四邊形AEMF是菱形.23、見解析【解析】
根據(jù)等腰三角形的性質與判定及線段垂直平分線的性質解答即可.【詳解】過點A作AH⊥BC,垂足為H.∵在△ADE中,AD=AE(已知),AH⊥BC(所作),∴DH=EH(等腰三角形底邊上的高也是底邊上的中線).又∵BD=CE(已知),∴BD+DH=CE+EH(等式的性質),即:BH=CH.∵AH⊥BC(所作),∴AH為線段BC的垂直平分線.∴AB=AC(線段垂直平分線上的點到線段兩個端點的距離相等).∴∠B=∠C(等邊對等角).【點睛】本題考查等腰三角形的性質及線段垂直平分線的性質,等腰三角形的底邊中線、底邊上的高、頂角的角平分線三線合一;線段垂直平分線上的點到線段兩端的距離相等;24、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等邊三角形,②∵△D′BC是等邊三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如圖3中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠ABC﹣∠DBC=90°﹣α﹣β,同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣α﹣β+90°﹣α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=∠BD′C=30°,∴∠ADB=30°.(3)第①情況:當60°<α<110°時,如圖3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=,∵△BCD'是等邊三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣;第②情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.同理可得:∠ABC=(180°﹣α)=90°﹣α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣α),同(1)①可證△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣α﹣[β﹣(90°﹣α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可證△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴DE=,∴BE=BD+DE=7+,故答案為:7+或7﹣.【點睛】此題是三角形綜合題,主要考查全
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學低年級聽評課記錄
- 【人教版】八年級地理上冊第一章第二節(jié)《人口》聽課評課記錄及優(yōu)化訓練答案
- 蘇州蘇教版六年級數(shù)學上冊第三單元《分數(shù)應用題(1)》聽評課記錄
- 聽評課記錄六年級語文
- 新版華東師大版八年級數(shù)學下冊《16.2.2分式的加減分式的加減-同分母分式加減》聽評課記錄16
- 小學二年級數(shù)學100道口算題
- 蘇科版七年級數(shù)學上冊《2.2有理數(shù)與無理數(shù)》聽評課記錄
- 北師大版道德與法治七年級下冊1.2《理解情緒》聽課評課記錄
- 八年級歷史人教版下冊聽課評課記錄:第9課 對外開放
- 校企共建培訓中心合作協(xié)議書范本
- 大學生就業(yè)指導教學-大學生就業(yè)形勢與政策
- 第五講鑄牢中華民族共同體意識-2024年形勢與政策
- 中華人民共和國學前教育法
- 2024年貴州公務員考試申論試題(B卷)
- 三年級(下冊)西師版數(shù)學全冊重點知識點
- 期末練習卷(試題)-2024-2025學年四年級上冊數(shù)學滬教版
- 2025年公務員考試申論試題與參考答案
- 抑郁癥課件教學課件
- 關于消防安全評估設備操作說明詳解
- 2025年高考作文專練(25道真題+審題立意+范文)- 2025年高考語文作文備考總復習
評論
0/150
提交評論