




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
Chapter20:DataAnalysis........Chapter20:DataAnalysis...Chapter20:DataAnalysisDecisionSupportSystemsDataWarehousingDataMiningClassificationAssociationRulesClustering........Chapter20:DataAnalysisDeciDecisionSupportSystemsDecision-supportsystemsareusedtomakebusinessdecisions,oftenbasedondatacollectedbyon-linetransaction-processingsystems.Examplesofbusinessdecisions:Whatitemstostock?Whatinsurancepremiumtochange?Towhomtosendadvertisements?Examplesofdatausedformakingdecisions Retailsalestransactiondetails Customerprofiles(income,age,gender,etc.)........DecisionSupportSystemsDecisiDecision-SupportSystems:OverviewDataanalysistasksaresimplifiedbyspecializedtoolsandSQLextensionsExampletasksForeachproductcategoryandeachregion,whatwerethetotalsalesinthelastquarterandhowdotheycomparewiththesamequarterlastyearAsabove,foreachproductcategoryandeachcustomercategoryStatisticalanalysispackages(e.g.,:S++)canbeinterfacedwithdatabasesStatisticalanalysisisalargefield,butnotcoveredhereDataminingseekstodiscoverknowledgeautomaticallyintheformofstatisticalrulesandpatternsfromlargedatabases.Adatawarehousearchivesinformationgatheredfrommultiplesources,andstoresitunderaunifiedschema,atasinglesite.Importantforlargebusinessesthatgeneratedatafrommultipledivisions,possiblyatmultiplesitesDatamayalsobepurchasedexternally........Decision-SupportSystems:OverDataWarehousingDatasourcesoftenstoreonlycurrentdata,nothistoricaldataCorporatedecisionmakingrequiresaunifiedviewofallorganizationaldata,includinghistoricaldataAdatawarehouseisarepository(archive)ofinformationgatheredfrommultiplesources,storedunderaunifiedschema,atasinglesiteGreatlysimplifiesquerying,permitsstudyofhistoricaltrendsShiftsdecisionsupportqueryloadawayfromtransactionprocessingsystems........DataWarehousingDatasourcesoDataWarehousing........DataWarehousing...DesignIssuesWhenandhowtogatherdataSourcedrivenarchitecture:datasourcestransmitnewinformationtowarehouse,eithercontinuouslyorperiodically(e.g.,atnight)Destinationdrivenarchitecture:warehouseperiodicallyrequestsnewinformationfromdatasourcesKeepingwarehouseexactlysynchronizedwithdatasources(e.g.,usingtwo-phasecommit)istooexpensiveUsuallyOKtohaveslightlyout-of-datedataatwarehouseData/updatesareperiodicallydownloadedformonlinetransactionprocessing(OLTP)systems.WhatschematouseSchemaintegration........DesignIssuesWhenandhowtogMoreWarehouseDesignIssuesDatacleansingE.g.,correctmistakesinaddresses(misspellings,zipcodeerrors)MergeaddresslistsfromdifferentsourcesandpurgeduplicatesHowtopropagateupdatesWarehouseschemamaybea(materialized)viewofschemafromdatasourcesWhatdatatosummarizeRawdatamaybetoolargetostoreon-lineAggregatevalues(totals/subtotals)oftensufficeQueriesonrawdatacanoftenbetransformedbyqueryoptimizertouseaggregatevalues........MoreWarehouseDesignIssuesDaWarehouseSchemasDimensionvaluesareusuallyencodedusingsmallintegersandmappedtofullvaluesviadimensiontablesResultantschemaiscalledastarschemaMorecomplicatedschemastructuresSnowflakeschema:multiplelevelsofdimensiontablesConstellation:multiplefacttables........WarehouseSchemasDimensionvalDataWarehouseSchema........DataWarehouseSchema...DataMiningDataminingistheprocessofsemi-automaticallyanalyzinglargedatabasestofindusefulpatterns
PredictionbasedonpasthistoryPredictifacreditcardapplicantposesagoodcreditrisk,basedonsomeattributes(income,jobtype,age,..)andpasthistoryPredictifapatternofphonecallingcardusageislikelytobefraudulentSomeexamplesofpredictionmechanisms:ClassificationGivenanewitemwhoseclassisunknown,predicttowhichclassitbelongsRegressionformulaeGivenasetofmappingsforanunknownfunction,predictthefunctionresultforanewparametervalue........DataMiningDataminingistheDataMining(Cont.)DescriptivePatternsAssociationsFindbooksthatareoftenboughtby“similar”customers.Ifanewsuchcustomerbuysonesuchbook,suggesttheotherstoo.AssociationsmaybeusedasafirststepindetectingcausationE.g.,associationbetweenexposuretochemicalXandcancer,ClustersE.g.,typhoidcaseswereclusteredinanareasurroundingacontaminatedwellDetectionofclustersremainsimportantindetectingepidemics........DataMining(Cont.)DescriptiveClassificationRulesClassificationruleshelpassignnewobjectstoclasses.E.g.,givenanewautomobileinsuranceapplicant,shouldheorshebeclassifiedaslowrisk,mediumriskorhighrisk?Classificationrulesforaboveexamplecoulduseavarietyofdata,suchaseducationallevel,salary,age,etc.
personP,P.degree=mastersandP.income>75,000
P.credit=excellent
personP,P.degree=bachelorsand
(P.income
25,000andP.income
75,000)
P.credit=goodRulesarenotnecessarilyexact:theremaybesomemisclassificationsClassificationrulescanbeshowncompactlyasadecisiontree.........ClassificationRulesClassificaDecisionTree........DecisionTree...ConstructionofDecisionTreesTrainingset:adatasampleinwhichtheclassificationisalreadyknown.
Greedytopdowngenerationofdecisiontrees.Eachinternalnodeofthetreepartitionsthedataintogroupsbasedonapartitioningattribute,andapartitioningcondition
forthenodeLeafnode:all(ormost)oftheitemsatthenodebelongtothesameclass,orallattributeshavebeenconsidered,andnofurtherpartitioningispossible.........ConstructionofDecisionTreesBestSplitsPickbestattributesandconditionsonwhichtopartitionThepurityofasetSoftraininginstancescanbemeasuredquantitativelyinseveralways.Notation:numberofclasses=k,numberofinstances=|S|,
fractionofinstancesinclassi=pi.TheGinimeasureofpurityisdefinedas[ Gini(S)=1-
Whenallinstancesareinasingleclass,theGinivalueis0Itreachesitsmaximum(of1–1/k)ifeachclassthesamenumberofinstances.
ki-1p2i........BestSplitsPickbestattributeBestSplits(Cont.)Anothermeasureofpurityistheentropy
measure,whichisdefinedas entropy(S)=–
WhenasetSissplitintomultiplesetsSi,I=1,2,…,r,wecanmeasurethepurityoftheresultantsetofsetsas:
purity(S1,S2,…..,Sr)=
TheinformationgainduetoparticularsplitofSintoSi,i=1,2,….,r
Information-gain(S,{S1,S2,….,Sr)=purity(S)–purity(S1,S2,…Sr)
ri=1|Si||S|purity(Si)ki-1pilog2pi........BestSplits(Cont.)AnothermeaBestSplits(Cont.)Measureof“cost”ofasplit:
Information-content(S,{S1,S2,…..,Sr}))=–
Information-gainratio=Information-gain(S,{S1,S2,……,Sr}) Information-content(S,{S1,S2,…..,Sr})Thebestsplitistheonethatgivesthemaximuminformationgainratiolog2ri-1|Si||S||Si||S|
........BestSplits(Cont.)MeasureofFindingBestSplitsCategoricalattributes(withnomeaningfulorder):Multi-waysplit,onechildforeachvalueBinarysplit:tryallpossiblebreakupofvaluesintotwosets,andpickthebestContinuous-valuedattributes(canbesortedinameaningfulorder)Binarysplit:Sortvalues,tryeachasasplitpointE.g.,ifvaluesare1,10,15,25,splitat1,10,15PickthevaluethatgivesbestsplitMulti-waysplit:Aseriesofbinarysplitsonthesameattributehasroughlyequivalenteffect........FindingBestSplitsCategoricalDecision-TreeConstructionAlgorithm
ProcedureGrowTree(S)
Partition(S);
ProcedurePartition(S)
if(purity(S)>
por|S|<s)then
return;
foreachattributeA
evaluatesplitsonattributeA;
Usebestsplitfound(acrossallattributes)topartition
SintoS1,S2,….,Sr,
fori=1,2,…..,r
Partition(Si);........Decision-TreeConstructionAlgOtherTypesofClassifiersNeuralnetclassifiersarestudiedinartificialintelligenceandarenotcoveredhereBayesianclassifiersuseBayestheorem,whichsays
p(cj|d)=p(d|cj)p(cj)
p(d)
where
p(cj|d)=probabilityofinstancedbeinginclasscj,
p(d|cj)=probabilityofgeneratinginstancedgivenclasscj,
p(cj
)
=probabilityofoccurrenceofclasscj,and
p(d)=probabilityofinstancedoccuring
........OtherTypesofClassifiersNeurNa?veBayesianClassifiersBayesianclassifiersrequirecomputationofp(d|cj)precomputationofp(cj)
p(d)canbeignoredsinceitisthesameforallclassesTosimplifythetask,na?veBayesianclassifiersassumeattributeshaveindependentdistributions,andtherebyestimate
p(d|cj)=p(d1|cj)*p(d2|cj)*….*(p(dn|cj)Eachofthep(di|cj)canbeestimatedfromahistogramondivaluesforeachclasscjthehistogramiscomputedfromthetraininginstancesHistogramsonmultipleattributesaremoreexpensivetocomputeandstore........Na?veBayesianClassifiersBayeRegressionRegressiondealswiththepredictionofavalue,ratherthanaclass.Givenvaluesforasetofvariables,X1,X2,…,Xn,wewishtopredictthevalueofavariableY.Onewayistoinfercoefficientsa0,a1,a1,…,ansuchthat
Y=a0+a1*X1+a2*X2+…+an*Xn
Findingsuchalinearpolynomialiscalledlinearregression.Ingeneral,theprocessoffindingacurvethatfitsthedataisalsocalledcurvefitting.Thefitmayonlybeapproximatebecauseofnoiseinthedata,orbecausetherelationshipisnotexactlyapolynomialRegressionaimstofindcoefficientsthatgivethebestpossiblefit.........RegressionRegressiondealswitAssociationRulesRetailshopsareofteninterestedinassociationsbetweendifferentitemsthatpeoplebuy.SomeonewhobuysbreadisquitelikelyalsotobuymilkApersonwhoboughtthebookDatabaseSystemConceptsisquitelikelyalsotobuythebookOperatingSystemConcepts.Associationsinformationcanbeusedinseveralways.E.g.,whenacustomerbuysaparticularbook,anonlineshopmaysuggestassociatedbooks.Associationrules:
bread
milkDB-Concepts,OS-ConceptsNetworksLefthandside:antecedent,righthandside:consequentAnassociationrulemusthaveanassociatedpopulation;thepopulationconsistsofasetofinstancesE.g.,eachtransaction(sale)atashopisaninstance,andthesetofalltransactionsisthepopulation........AssociationRulesRetailshopsAssociationRules(Cont.)Ruleshaveanassociatedsupport,aswellasanassociatedconfidence.Support
isameasureofwhatfractionofthepopulationsatisfiesboththeantecedentandtheconsequentoftherule.E.g.,supposeonly0.001percentofallpurchasesincludemilkandscrewdrivers.Thesupportfortheruleismilk
screwdriversislow.Confidence
isameasureofhowoftentheconsequentistruewhentheantecedentistrue.E.g.,therulebread
milkhasaconfidenceof80percentif80percentofthepurchasesthatincludebreadalsoincludemilk.........AssociationRules(Cont.)RulesFindingAssociationRulesWearegenerallyonlyinterestedinassociationruleswithreasonablyhighsupport(e.g.,supportof2%orgreater)Na?vealgorithmConsiderallpossiblesetsofrelevantitems.Foreachsetfinditssupport(i.e.,counthowmanytransactionspurchaseallitemsintheset).Largeitemsets:setswithsufficientlyhighsupportUselargeitemsetstogenerateassociationrules.FromitemsetAgeneratetheruleA-bforeachb
A.Supportofrule=support(A).Confidenceofrule=support(A)/support(A-)........FindingAssociationRulesWearFindingSupportDeterminesupportofitemsetsviaasinglepassonsetoftransactionsLargeitemsets:setswithahighcountattheendofthepassIfmemorynotenoughtoholdallcountsforallitemsetsusemultiplepasses,consideringonlysomeitemsetsineachpass.Optimization:Onceanitemsetiseliminatedbecauseitscount(support)istoosmallnoneofitssupersetsneedstobeconsidered.Theaprioritechniquetofindlargeitemsets:Pass1:countsupportofallsetswithjust1item.EliminatethoseitemswithlowsupportPassi:candidates:everysetofiitemssuchthatallitsi-1itemsubsetsarelargeCountsupportofallcandidatesStopiftherearenocandidates........FindingSupportDeterminesuppoOtherTypesofAssociationsBasicassociationruleshaveseverallimitationsDeviationsfromtheexpectedprobabilityaremoreinterestingE.g.,ifmanypeoplepurchasebread,andmanypeoplepurchasecereal,quiteafewwouldbeexpectedtopurchasebothWeareinterestedinpositiveaswellasnegativecorrelationsbetweensetsofitemsPositivecorrelation:co-occurrenceishigherthanpredictedNegativecorrelation:co-occurrenceislowerthanpredictedSequenceassociations/correlationsE.g.,wheneverbondsgoup,stockpricesgodownin2daysDeviationsfromtemporalpatternsE.g.,deviationfromasteadygrowthE.g.,salesofwinterweargodowninsummerNotsurprising,partofaknownpattern.Lookfordeviationfromvaluepredictedusingpastpatterns........OtherTypesofAssociationsBasClusteringClustering:Intuitively,findingclustersofpointsinthegivendatasuchthatsimilarpointslieinthesameclusterCanbeformalizedusingdistancemetricsinseveralwaysGrouppointsintoksets(foragivenk)suchthattheaveragedistanceofpointsfromthecentroidoftheirassignedgroupisminimizedCentroid:pointdefinedbytakingaverageofcoordinatesineachdimension.Anothermetric:minimizeaveragedistancebetweeneverypairofpointsinaclusterHasbeenstudiedextensivelyinstatistics,butonsmalldatasetsDataminingsystemsaimatclusteringtechniquesthatcanhandleverylargedatasetsE.g.,theBirchclusteringalgorithm(moreshortly)........ClusteringClustering:IntuitivHierarchicalClusteringExamplefrombiologicalclassification(thewordclassificationheredoesnotmeanapredictionmechanism)chordata
mammaliareptilia
leopardshumanssnakescrocodilesOtherexamples:Internetdirectorysystems(e.g.,Yahoo,moreonthislater)AgglomerativeclusteringalgorithmsBuildsmallclusters,thenclustersmallclustersintobiggerclusters,andsoonDivisiveclusteringalgorithmsStartwithallitemsinasinglecluster,repeatedlyrefine(break)clustersintosmallerones........HierarchicalClusteringExampleClusteringAlgorithmsClusteringalgorithmshavebeendesignedtohandleverylargedatasetsE.g.,theBirchalgorithmMainidea:useanin-memoryR-treetostorepointsthatarebeingclusteredInsertpointsoneatatimeintotheR-tree,merginganewpointwithanexistingclusterifislessthansome
distanceawayIftherearemoreleafnodesthanfitinmemory,mergeexistingclustersthatareclosetoeachotherAttheendoffirstpasswegetalargenumberofclustersattheleavesoftheR-treeMergeclusterstoreducethenumberofclusters........Clu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- KTV清潔合同范本
- 出租電纜鋼板合同范本
- 個人賺取傭金合同范例
- 中介公租房合同范本
- 住家阿姨雇傭合同范本
- 農村改造房出售合同范本
- 兄妹房屋出賣合同范例
- 產權代辦合同范本
- 專利權轉讓合同范本
- 創(chuàng)業(yè)辦公司合同范本
- 高效液相含量測定計算公式
- 六宮格數獨解題技巧
- 公安機關通用告知書模板
- 工程款支付審批流程圖
- 人教版七年級歷史下冊第一單元填空題
- 封頭重量和容積計算
- 《小學數學課程與教學》教學大綱
- 《手機攝影》全套課件(完整版)
- 彩色學生電子小報手抄報模板春節(jié)41
- 筒形件拉深成形工藝分析及模具設計
- JGJ_T231-2021建筑施工承插型盤扣式鋼管腳手架安全技術標準(高清-最新版)
評論
0/150
提交評論