侯杰泰結(jié)構(gòu)方程模型-課件_第1頁
侯杰泰結(jié)構(gòu)方程模型-課件_第2頁
侯杰泰結(jié)構(gòu)方程模型-課件_第3頁
侯杰泰結(jié)構(gòu)方程模型-課件_第4頁
侯杰泰結(jié)構(gòu)方程模型-課件_第5頁
已閱讀5頁,還剩136頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

侯杰泰結(jié)構(gòu)方程模型Kit-TaiHau

EducationalPsychologyDept,TheChineseUniversityofHongKong1侯杰泰結(jié)構(gòu)方程模型1侯杰泰結(jié)構(gòu)方程模型I簡介IIntroduction

2侯杰泰結(jié)構(gòu)方程模型I簡介2精品資料3精品資料3你怎么稱呼老師?如果老師最后沒有總結(jié)一節(jié)課的重點的難點,你是否會認為老師的教學(xué)方法需要改進?你所經(jīng)歷的課堂,是講座式還是討論式?教師的教鞭“不怕太陽曬,也不怕那風(fēng)雨狂,只怕先生罵我笨,沒有學(xué)問無顏見爹娘……”“太陽當空照,花兒對我笑,小鳥說早早早……”44100個推理測驗分數(shù)

21,31,32,05,06,09,10,22,29,18,11,01,39,92,23,27,93,97,30,02,96,40,53,78,04,98,36,07,08,24,54,55,77,99,34,03,86,87,59,60,15,62,63,43,52,28,79,58,65,95,81,85,57,14,17,33,16,19,20,37,25,69,84,61,64,68,70,42,45,72,83,89,44,38,47,71,00,73,12,35,82,56,75,41,46,49,50,94,66,67,76,51,88,90,74,13,26,80,48,91均值Mean=53,標準差SD(StdDev)=15

5100個推理測驗分數(shù)5侯杰泰結(jié)構(gòu)方程模型6侯杰泰結(jié)構(gòu)方程模型677再生/隱含矩陣

(reproduced/impliedmatrix)

8再生/隱含矩陣(reproduced/impliedm991010檢查模型的準確性(accuracy)和簡潔性(parsimony)

擬合優(yōu)度指數(shù)(goodnessoffitindex),簡稱為擬合指數(shù)(fitindex):

、NNFI、CFI

df=[不重復(fù)元素non-duplicatingelements,

p(p+1)/2]–[估計參數(shù)estimatedparameters]

在前面例子

df=9x10/2–21=2411檢查模型的準確性(accuracy)和簡潔性(parsimo依據(jù)及指定模型找出與相距最小的

侯杰泰結(jié)構(gòu)方程模型輸出

Output輸入InputSEM程式program(e.g.,LISREL)

、各路徑參數(shù)(因子負荷loading、因子相關(guān)系數(shù)factorcorrelations等)各種擬合指數(shù)12依據(jù)及指定模型侯杰泰結(jié)構(gòu)方程模型輸出輸入SEM程式侯杰泰結(jié)構(gòu)方程模型I簡介IIntroduction

13侯杰泰結(jié)構(gòu)方程模型I簡介13侯杰泰結(jié)構(gòu)方程模型14侯杰泰結(jié)構(gòu)方程模型141515161617171818191920202121222223232424_________________________________________________________________________________________________(no.ofestimatedparameters)模型df

NNFICFI需要估計的參數(shù)個數(shù)

______________________________________________________________________________________________

M12440.973.982 21=9Load+

9Uniq+

3Corr

M227 503.294.47118=9Load+

9Uniq

M326 255.647.74519=9Load+9Uniq+

1Corr

M426 249.656.752 19=9Load+

9Uniq+

1CorrM527 263.649 .727 18=9Load+

9Uniq

M624 422.337.558 21=9Load+

9Uniq+

3CorrM7 21 113 .826 .89824=9Load+

9Uniq+

6Corr

______________________________________________________________________________________________25______________________________侯杰泰結(jié)構(gòu)方程模型自由度(df),擬合程度

(fit),不能保證最好,可能存在更簡潔(parsimonious)又擬合(fit)得很好的模型

輸入Input:相關(guān)(或協(xié)方差)矩陣correlation/covariancematrix一個或多個有理據(jù)的可能模型

(alternativemodels)輸出Output:既符合某指定模型,又與差異最小的矩陣估計各路徑參數(shù)parameter(因子負荷loading、因子相關(guān)系數(shù)factorcorrelations等)。計算出各種擬合指數(shù)(goodnessoffitindexes)26侯杰泰結(jié)構(gòu)方程模型自由度(df),擬合程度(fit),依據(jù)及指定模型找出與相距最小的

侯杰泰結(jié)構(gòu)方程模型輸出

Output輸入InputSEM程式program(e.g.,LISREL)

、各路徑參數(shù)(因子負荷loading、因子相關(guān)系數(shù)factorcorrelations等)各種擬合指數(shù)27依據(jù)及指定模型侯杰泰結(jié)構(gòu)方程模型輸出輸入SEM程式結(jié)構(gòu)方程模型的重要性

StructuralEquationModel,SEMCovarianceStructureModeling,CSM

LInearStructuralRELationship,

LISREL(EQS,AMOS,Mplus,etc.)28結(jié)構(gòu)方程模型的重要性28侯杰泰結(jié)構(gòu)方程模型測量模型

(measurementmodel)

,,

——外源指標exogenous(如6項社經(jīng)指標)

—內(nèi)生指標endogenous(如語、數(shù)、英成績)—因子負荷矩陣

(loading)—誤差項

(uniqueness,measurementerrors)

結(jié)構(gòu)模型

(structuralmodel)29侯杰泰結(jié)構(gòu)方程模型測量模型(measurementmod侯杰泰結(jié)構(gòu)方程模型同時處理多個因變量(manydependentvariables)

同時估計因子結(jié)構(gòu)factorstructure和因子關(guān)系30侯杰泰結(jié)構(gòu)方程模型同時處理多個因變量(manydepend容許自變量independentvariable和因變量dependentvariable含測量誤差measurementerror[傳統(tǒng)方法(如回歸regression)假設(shè)自變量independentvariable沒有誤差

]_______________________________________

英文

中文_

觀察真誤差觀察

真誤差

得分分數(shù)得分

分數(shù)observedtrueerrorobservedtrueerrorscorescorescorescore

X

TxeY

Tye_

8

7+15

3+2

5

6-16

7-17

5+29

7+2

9

8+15

8-3......X=Tx+e Y=Ty+eifr(X,Y)=0.5r(Tx,Ty)=0.5/[(rXt-t)(rYt-t)]1/2=0.71(assumert-t=0.7)31容許自變量independentvariable和因變量d容許更大彈性的測量模型估計整個模型的擬合程度modelfit[用以比較不同模型]SEM包括:回歸分析regression、因子分析(驗證性因子分析CFA、探索性因子分析EFA)、t檢驗t-test、方差分析ANOVA、比較各組因子均值groupmeancomparison、交互作用模型interaction、實驗設(shè)計exptdesign

32容許更大彈性的測量模型32侯杰泰結(jié)構(gòu)方程模型I簡介IIntroduction

33侯杰泰結(jié)構(gòu)方程模型I簡介33侯杰泰結(jié)構(gòu)方程模型Intheaboveanalyses,wehaveastructureinmindtotest,thisprocessiscalledconfirmatoryfactoranalysis(CFA)Itisalsopossiblethatwehaveno“theory”inmindtotest,i.e.,wehavethefollowingresearchquestions:Howmanyclusterofsubjectsarethere?Howdothese9subjectsrelatetoeachoftheseclusters(factors)?Whichofthesesubjectsaremorecloselyrelated/correlatedthanothers?34侯杰泰結(jié)構(gòu)方程模型IntheaboveanalysesUsingLISREL,runthefollowingprogramDANI=9NO=100KM1.000.121.000.080.081.000.500.110.081.000.480.030.120.451.000.070.460.150.080.111.000.050.440.150.120.120.441.000.140.170.530.140.080.100.061.000.160.050.430.100.060.080.100.541.00PCNC=6OU35UsingLISREL,runthefollowinTheoutput:PrincipalComponentsAnalysisEigenvaluesandEigenvectors

PC_1PC_2PC_3PC_4PC_5PC_6

------------------------------------------Eigenvalue2.561.661.630.690.590.56%Variance28.4218.4918.157.656.506.18Cum%Var28.4246.9165.0672.7179.2185.3936Theoutput:36侯杰泰結(jié)構(gòu)方程模型37侯杰泰結(jié)構(gòu)方程模型37Assume3factors,werunthefollowingprogramandobtainfurtherinformationDANI=9NO=100KM1.000.121.000.080.081.000.500.110.081.000.480.030.120.451.000.070.460.150.080.111.000.050.440.150.120.120.441.000.140.170.530.140.080.100.061.00.160.050.430.100.060.080.100.541.0FANF=3OU38Assume3factors,werunthefTheOutput:Varimax-RotatedFactorLoadings

Factor1Factor2Factor3UniqueVar----------------------------------VAR10.100.730.040.46

VAR20.090.060.660.55

VAR30.630.050.120.58

VAR40.080.670.080.53

VAR50.040.650.070.57

VAR60.070.050.680.54

VAR70.050.070.650.57

VAR80.820.080.070.32VAR90.650.090.040.56factorsareassumedtobeuncorrelated正交39TheOutput:factorsareassumed

Promax-RotatedFactorLoadings

Factor1Factor2Factor3UniqueVar----------------------------------

VAR10.73-0.030.030.46

VAR20.000.660.020.55

VAR3-0.020.060.640.58

VAR40.680.020.010.53

VAR50.660.01-0.030.57

VAR6-0.010.680.000.54

VAR70.010.66-0.020.57

VAR80.00-0.010.830.32VAR90.03-0.030.660.56

FactorCorrelations

Factor1Factor2Factor3------------------------

Factor11.00Factor20.191.00

Factor30.210.221.00Factorsallowedtobecorrelated斜交40Promax-RotatedFactorLoadingEFA(exploratoryFA)CFA(confirmatoryFA)NospecificideaonhowvariablearerelatedHavesomeguess(hypotheses)onrelationsamongvariables(e.g.,Variables1,4,5shouldloadonFactor3)determinenumberoffactorsusingEigenvalue(EV≧1orscreetest)knowbeforehandthenumberoffactorseachitemloadedonALLfactors,thoughsomeloadingsaresmallItemsloadedontargetedfactorsonly41EFA(exploratoryFA)CFA(conf侯杰泰結(jié)構(gòu)方程模型17個題目:

學(xué)習(xí)態(tài)度及取向

A、B、C、D、E

4、4、3、3、3題

350個學(xué)生

ConfirmatoryFactorAnalysis,CFA

42侯杰泰結(jié)構(gòu)方程模型17個題目:

學(xué)習(xí)態(tài)度及取向

A、B、C4343ConfirmatoryFactorAnalysisExample1DANI=17NO=350MA=KMKMSY1.341…MONX=17NK=5LX=FU,FIPH=STTD=DI,FRPALX4(10000)4(01000)3(00100)3(00010)3(00001)OUMISSSC44ConfirmatoryFactorAnalysisE侯杰泰結(jié)構(gòu)方程模型

12

34runningLISREL45侯杰泰結(jié)構(gòu)方程模型

12

3侯杰泰結(jié)構(gòu)方程模型46侯杰泰結(jié)構(gòu)方程模型46什么情況下固定(fixed,FI)?兩個變量(指標或因子)間沒有關(guān)系,將元素固定為0例如,不從屬,將因子負荷(LX1,2)固定為0。又如,因子和因子沒有相關(guān),PH1,2固定為0。需要設(shè)定因子的度量單位(setmetric/scale)因子沒有單位(metric),無法計算。一種將所有因子的方差固定為1(或其他常數(shù)),簡稱為固定方差法(fixedvariancemethod)一種是在每個因子中選擇一個負荷固定為1(或其他常數(shù)),簡稱為固定負荷法(fixedloading)什么情況下設(shè)定為自由(free,FR):所有需要估計的參數(shù)47什么情況下固定(fixed,FI)?474848補充例子9個題目:第1個因子:

第1、2、3題第2個因子:

第4、5、6題第3個因子:

第7、8、9題設(shè)因子1,2,3互有相關(guān)

因子1因子2因子3第1題,x1FRFIFI第2題,x2FRFIFI第3題,x3FRFIFI第4題,x4FIFRFI第5題,x5FIFRFI第6題,x6FIFRFI第7題,x7FIFIFR第8題,x8FIFIFR第9題,x9FIFIFR固定方差法(fixedvariance)49補充例子因子1因子2因子3第1題,x1FRFIFI第2題,固定方差法

(fixedvariance)MOLX=9NK=3LX=FU,FIPH=STTD=DI,FRFRLX1,1LX2,1LX3,1LX4,2LX5,2FRLX6,2LX7,3LX8,3LX9,3固定負荷法(fixedloading)MOLX=9NK=3LX=FU,FIPH=SY,FRTD=DI,FRFRLX2,1LX3,1LX5,2LX6,2LX8,3LX9,3VA1LX1,1LX4,2LX7,350固定方差法(fixedvariance)50設(shè)因子1和因子3無關(guān)(uncorrelated),因子1和因子2、因子2和因子3相關(guān)(correlated)固定方差法(fixedvariance)MOLX=9NK=3LX=FU,FIPH=STTD=DI,FRFRLX1,1LX2,1LX3,1LX4,2LX5,2FRLX6,2LX7,3LX8,3LX9,3FIPH1,3固定負荷法(fixedloading)MOLX=9NK=3LX=FU,FIPH=SY,FRTD=DI,FRFRLX2,1LX3,1LX5,2LX6,2LX8,3LX9,3VA1LX1,1LX4,2LX7,3FIPH1,351設(shè)因子1和因子3無關(guān)(uncorrelated),因子1和因NumberofInputVariables17(讀入變量個數(shù))NumberofY-Variables0(Y-變量個數(shù))NumberofX-Variables17(X-變量個數(shù))NumberofETA-Variables0(Y-因子個數(shù))NumberofKSI-Variables5(X-因子個數(shù))NumberofObservations350(樣品個數(shù))52NumberofInputVariables17(ParameterSpecifications參數(shù)設(shè)定

LAMBDA-X

KSI1KSI2KSI3KSI4KSI5----------------------------------------VAR110000VAR220000VAR330000VAR440000VAR505000VAR606000VAR707000VAR808000VAR900900VAR10001000VAR11001100VAR12000120VAR13000130VAR14000140VAR15000015VAR16000016VAR1700001753ParameterSpecifications參數(shù)設(shè)定5

PHI

KSI1KSI2KSI3KSI4KSI5----------------------------------------KSI10KSI2180KSI319200KSI42122230KSI5242526270THETA-DELTA

VAR1VAR2VAR3VAR4VAR5VAR6VAR7VAR8VAR9VAR1028293031323334353637VAR11VAR12VAR13VAR14VAR15VAR16VAR17

3839404142434454PHI54

NumberofIterations=19

LISRELEstimates(MaximumLikelihood)參數(shù)估計

LAMBDA-X

KSI1KSI2KSI3KSI4KSI5

----------------------------------------

VAR10.59--------(0.06)9.49

VAR20.58--------(0.06)9.30

VAR30.62--------(0.06)9.93

VAR40.05--------(0.07)0.81參數(shù)(parameter)StandardError,SEt-value=參數(shù)

/SE0.59/0.06=9.4955NumberofIterations=19參數(shù)(

VAR5--0.64------(0.06)10.46VAR6--0.57------(0.06)9.32VAR7--0.51------(0.06)8.29VAR8--0.28------(0.06)4.41VAR9----0.59----(0.06)9.5656VAR5--0.64

VAR10----0.61----(0.06)9.99VAR11----0.64----(0.06)10.47VAR12------0.62--(0.06)10.28VAR13------0.66--(0.06)10.84VAR14------0.54--(0.06)8.96VAR15--------0.65(0.06)11.14VAR16--------0.72(0.06)12.19VAR17--------0.55(0.06)9.3657VAR10----

PHI

KSI1KSI2KSI3KSI4KSI5----------------------------------------KSI11.00

KSI20.521.00(0.07)7.06

KSI30.400.531.00(0.08)(0.07)5.217.24

KSI40.510.540.481.00(0.07)(0.07)(0.07)6.977.476.60

KSI50.420.500.440.501.00(0.07)(0.07)(0.07)(0.07)5.776.996.227.17

58PHI58

THETA-DELTA

VAR1VAR2VAR3VAR4VAR5VAR6------------------------------------0.650.660.611.000.590.67(0.07)(0.07)(0.07)(0.08)(0.07)(0.07)9.639.859.0213.198.8210.21

VAR7VAR8VAR9VAR10VAR11VAR12------------------------------------0.740.920.660.630.590.61(0.07)(0.07)(0.07)(0.07)(0.07)(0.06)11.0512.709.969.468.809.46

VAR13VAR14VAR15VAR16VAR17------------------------------0.570.700.570.480.69(0.07)(0.07)(0.06)(0.06)(0.06)8.7010.759.137.4910.9159THETA-DELTA59GoodnessofFitStatistics擬合優(yōu)度統(tǒng)計量DegreesofFreedom=109MinimumFitFunctionChi-Square=194.57(P=0.00)NormalTheoryWeightLeastSqChi-Sq=190.15(P=0.00)EstimatedNon-centralityParameter(NCP)=81.1590PercentConfidenceIntervalforNCP=(46.71;123.45)MinimumFitFunctionValue=

0.56PopulationDiscrepancyFunctionValue(F0)=0.2390PercentConfidenceIntervalforF0=(0.13;0.35)RootMeanSquareErrorofApproximation(RMSEA)=0.04690PercentConfidenceIntervalforRMSEA=(0.035;0.057)P-ValueforTestofCloseFit(RMSEA<0.05)=0.71ExpectedCross-ValidationIndex(ECVI)=0.8090PercentConfidenceIntervalforECVI=(0.70;0.92)ECVIforSaturatedModel=0.88ECVIforIndependenceModel=5.78Chi–df=190.15-1090.56x(N-1)=chi0.56x349=194.5760GoodnessofFitStatisticsChiChi-SquareforIndependenceModelwith136df=1982.04IndependenceAIC=2016.04ModelAIC=278.15SaturatedAIC=306.00IndependenceCAIC=2098.63ModelCAIC=491.90SaturatedCAIC=1049.26NormedFitIndex(NFI)=0.90

Non-NormedFitIndex(NNFI)=0.94ParsimonyNormedFitIndex(PNFI)=0.72

ComparativeFitIndex(CFI)=0.95IncrementalFitIndex(IFI)=0.95RelativeFitIndex(RFI)=0.88CriticalN(CN)=263.34RootMeanSquareResidual(RMR)=0.054

StandardizedRMR=0.054GoodnessofFitIndex(GFI)=0.94AdjustedGoodnessofFitIndex(AGFI)=0.92ParsimonyGoodnessofFitIndex(PGFI)=0.67NNFI=TLICFI=RNIOldestLISRELindexes:RMR,SRMR,GFI,AGFI61Chi-SquareforIndependenceMoModificationIndicesforLAMBDA-X修正指數(shù)

KSI1KSI2KSI3KSI4KSI5----------------------------------------VAR1--0.060.660.092.53VAR2--0.380.530.230.11VAR3--0.720.010.031.49VAR4--0.000.030.010.03VAR57.73--9.629.231.50VAR60.01--3.291.071.50VAR70.12--0.250.122.26VAR841.35--3.6622.024.78VAR90.400.02--2.190.22VAR100.030.10--0.300.22…MaximumModificationIndexis41.35forElement(8,1)LX修正指數(shù):該參數(shù)由固定改為自由估計,會減少的數(shù)值62ModificationIndicesforLAMBDCompletelyStandardizedSolution

LAMBDA-XKSI1KSI2KSI3KSI4KSI5----------------------------------------VAR10.59--------VAR20.58--------VAR30.62--------VAR40.05--------VAR5--0.64------VAR6--0.57------VAR7--0.51------VAR8--0.28------VAR9----0.59----VAR10----0.61----VAR11----0.64----VAR12------0.62--VAR13------0.66--VAR14------0.54--VAR15--------0.65VAR16--------0.72VAR17--------0.5563CompletelyStandardizedSoluti

PHI

KSI1KSI2KSI3KSI4KSI5----------------------------------------KSI11.00KSI20.521.00KSI30.400.531.00KSI40.510.540.481.00KSI50.420.500.440.501.00THETA-DELTA

VAR1VAR2VAR3VAR4VAR5VAR6------------------------------------------------0.650.660.611.000.590.67VAR7VAR8VAR9VAR10VAR11VAR12------------------------------------------------0.740.920.660.630.590.61

VAR13VAR14VAR15VAR16VAR17----------------------------------------0.570.700.570.480.6964PHI6565侯杰泰結(jié)構(gòu)方程模型Q4在A的負荷loading很小

(LX=0.05),但在其他因子的修正指數(shù)(MI,modificationindex)也不高不從屬A,也不歸屬其他因子Q8在B的負荷不高(0.28),但在A的MI是41.4,可能歸屬A因子間相關(guān)很高(0.40至0.54)模型擬合fit相當好:(109)=194.57,RMSEA=0.046,NNFI=.94.CFI=.95。仔細檢查題目內(nèi)容后,刪去Q4,Q8歸入A66侯杰泰結(jié)構(gòu)方程模型Q4在A的負荷loading很小(LX侯杰泰結(jié)構(gòu)方程模型DANI=17NO=350KMSY….(此處輸入相關(guān)矩陣)

SE;123567891011121314151617/MONX=16NK=5PH=STTD=DI,FRPALX3(10000)3(01000)1(10000)3(00100)3(00010)3(00001)OUMISSSCSE1234567891011121314151617/(note:2lineswithout“;”)67侯杰泰結(jié)構(gòu)方程模型DANI=17NO=350SE67Q8歸屬A,因子負荷很高(.49),

(94)=149.51,RMSEA=.040,NNFI=.96,CFI=.97。雖然沒有嵌套關(guān)系,模型比好Q8同時從屬A和B?

68Q8歸屬A,因子負荷很高(.49),68DANI=17NO=350KMSY…SE;123567891011121314151617/MONX=16NK=5PH=STTD=DI,FRPALX3(10000)3(01000)1(11000)3(00100)3(00010)3(00001)OUMISSSC69DANI=17NO=35069侯杰泰結(jié)構(gòu)方程模型(93)=148.61,RMSEA=.040,NNFI=.96,CFI=.97。Q8在A負荷為.54,在B負荷為-.08因為概念上Q8應(yīng)與B成正相關(guān),故不合理。而且這負荷相對低,所以我們選擇通常,每題只歸屬一個因子70侯杰泰結(jié)構(gòu)方程模型(93)=148.61,RMSE修正modification前后模型的擬合指數(shù)比較______________________________________模型

df RMSEANNFICFI註______________________________________M-A 109 195.046.94.95原模型M-B 94150.040 .96.97刪Q4,Q8-AM-C 93149.040 .96.97刪Q4,Q8-A,BMB-299152 .038 .94.952階因子______________________________________71修正modification前后模型的擬合指數(shù)比較71侯杰泰結(jié)構(gòu)方程模型內(nèi)容

矩陣大小固定負荷法fixedloading固定方差法fixedvarianceLX因子與觀察變量(指標)的從屬關(guān)系(因子負荷)NXxNK000VA1LX11100VA1LX42100VA1LX73000010010000001001100100100010010010001001001PH因子與因子間的相關(guān)(協(xié)方差)NKxNK111或100111010111001因子間因子間有關(guān)無關(guān)011或

000101000110000VA1PH11PH22VA1PH33TD指標誤差間的關(guān)系(協(xié)方差)NXxNX100000000010000000001000000000100000000010000……100000000010000000001000000000100000000010000……72侯杰泰結(jié)構(gòu)方程模型內(nèi)容矩陣大小固定負荷法固定方差法LX因子驗證性因子分析(CFA)LX,PH,TD的設(shè)定方法A.用固定方差法LX(LAMBDA-X,因子負荷)

KSI1KSI2KSI3KSI4KSI5----------------------------------------VAR110000VAR210000VAR310000VAR410000VAR501000VAR601000VAR701000VAR801000VAR900100VAR1000100VAR1100100VAR1200010VAR1300010VAR1400010VAR1500001VAR1600001VAR170000173驗證性因子分析(CFA)LX,PH,TD的設(shè)定方法73用PA指令PALX1000010000100001000001000010000100001000001000010000100000100001000010000010000100001亦可簡化為PALX4(10000)4(01000)3(00100)3(00010)3(00001)或

FRLX11LX21LX31FRLX41LX52LX62FRLX72LX82LX93FRLX103LX113FRLX124LX134FRLX144LX155FRLX165LX175對應(yīng)的PH設(shè)定:(假設(shè)所有因子互有相關(guān)):PAPA0111110111110111110111110VA1PH11PH22VA1PH33PH44VA1PH5574用PA指令亦可簡化為對應(yīng)的PH設(shè)定:(假設(shè)所有因子互有相B.用固定方差法

PALX000001000010000100001000000000010000100001000001000010000100000100001000010000010000100001可用下述指令描述PALX4(10000)4

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論