2023-2024學年佛山市重點中學中考數(shù)學仿真試卷含解析_第1頁
2023-2024學年佛山市重點中學中考數(shù)學仿真試卷含解析_第2頁
2023-2024學年佛山市重點中學中考數(shù)學仿真試卷含解析_第3頁
2023-2024學年佛山市重點中學中考數(shù)學仿真試卷含解析_第4頁
2023-2024學年佛山市重點中學中考數(shù)學仿真試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年佛山市重點中學中考數(shù)學仿真試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.計算﹣2+3的結果是()A.1 B.﹣1 C.﹣5 D.﹣62.某微生物的直徑為0.000005035m,用科學記數(shù)法表示該數(shù)為()A.5.035×10﹣6 B.50.35×10﹣5 C.5.035×106 D.5.035×10﹣53.我省2013年的快遞業(yè)務量為1.2億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務量達到2.5億件,設2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.54.實數(shù)a在數(shù)軸上的位置如圖所示,則下列說法不正確的是()A.a(chǎn)的相反數(shù)大于2B.a(chǎn)的相反數(shù)是2C.|a|>2D.2a<05.下列說法正確的是()A.負數(shù)沒有倒數(shù)B.﹣1的倒數(shù)是﹣1C.任何有理數(shù)都有倒數(shù)D.正數(shù)的倒數(shù)比自身小6.在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的長是()A.3 B. C. D.7.定義運算:a?b=2ab.若a,b是方程x2+x-m=0(m>0)的兩個根,則(a+1)?a-(b+1)?b的值為()A.0B.2C.4mD.-4m8.第24屆冬奧會將于2022年在北京和張家口舉行,冬奧會的項目有滑雪(如跳臺滑雪、高山滑雪、單板滑雪等)、滑冰(如短道速滑、速度滑冰、花樣滑冰等)、冰球、冰壺等.如圖,有5張形狀、大小、質(zhì)地均相同的卡片,正面分別印有高山滑雪、速度滑冰、冰球、單板滑雪、冰壺五種不同的圖案,背面完全相同.現(xiàn)將這5張卡片洗勻后正面向下放在桌子上,從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是()A. B. C. D.9.如圖,邊長為2a的等邊△ABC中,M是高CH所在直線上的一個動點,連接MB,將線段BM繞點B逆時針旋轉60°得到BN,連接HN.則在點M運動過程中,線段HN長度的最小值是()A. B.a(chǎn) C. D.10.下列圖形中,既是軸對稱圖形又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.農(nóng)科院新培育出A、B兩種新麥種,為了了解它們的發(fā)芽情況,在推廣前做了五次發(fā)芽實驗,每次隨機各自取相同種子數(shù),在相同的培育環(huán)境中分別實驗,實驗情況記錄如下:種子數(shù)量10020050010002000A出芽種子數(shù)961654919841965發(fā)芽率0.960.830.980.980.98B出芽種子數(shù)961924869771946發(fā)芽率0.960.960.970.980.97下面有三個推斷:①當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率均為0.96,所以他們發(fā)芽的概率一樣;②隨著實驗種子數(shù)量的增加,A種子出芽率在0.98附近擺動,顯示出一定的穩(wěn)定性,可以估計A種子出芽的概率是0.98;③在同樣的地質(zhì)環(huán)境下播種,A種子的出芽率可能會高于B種子.其中合理的是__________(只填序號).12.含45°角的直角三角板如圖放置在平面直角坐標系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.13.如圖,把一塊直角三角板的直角頂點放在直尺的一邊上,若∠1=50°,則∠2=_____°.14.如圖,在平面直角坐標系中,四邊形OABC的頂點O是坐標原點,點A的坐標(6,0),B的坐標(0,8),點C的坐標(﹣2,4),點M,N分別為四邊形OABC邊上的動點,動點M從點O開始,以每秒1個單位長度的速度沿O→A→B路線向終點B勻速運動,動點N從O點開始,以每秒2個單位長度的速度沿O→C→B→A路線向終點A勻速運動,點M,N同時從O點出發(fā),當其中一點到達終點后,另一點也隨之停止運動,設動點運動的時間為t秒(t>0),△OMN的面積為S.則:AB的長是_____,BC的長是_____,當t=3時,S的值是_____.15.如圖,Rt△ABC紙片中,∠C=90°,AC=6,BC=8,點D在邊BC上,以AD為折痕將△ABD折疊得到△AB′D,AB′與邊BC交于點E.若△DEB′為直角三角形,則BD的長是_______.16.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,二次函數(shù)y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.18.(8分)在如圖的正方形網(wǎng)格中,每一個小正方形的邊長均為1.格點三角形ABC(頂點是網(wǎng)格線交點的三角形)的頂點A、C的坐標分別是(﹣2,0),(﹣3,3).(1)請在圖中的網(wǎng)格平面內(nèi)建立平面直角坐標系,寫出點B的坐標;(2)把△ABC繞坐標原點O順時針旋轉90°得到△A1B1C1,畫出△A1B1C1,寫出點B1的坐標;(3)以坐標原點O為位似中心,相似比為2,把△A1B1C1放大為原來的2倍,得到△A2B2C2畫出△A2B2C2,使它與△AB1C1在位似中心的同側;請在x軸上求作一點P,使△PBB1的周長最小,并寫出點P的坐標.19.(8分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.20.(8分)每年4月23日是世界讀書日,某校為了解學生課外閱讀情況,隨機抽取20名學生,對每人每周用于課外閱讀的平均時間(單位:min)進行調(diào)查,過程如下:收集數(shù)據(jù):30608150401101301469010060811201407081102010081整理數(shù)據(jù):課外閱讀平均時間x(min)0≤x<4040≤x<8080≤x<120120≤x<160等級DCBA人數(shù)3a8b分析數(shù)據(jù):平均數(shù)中位數(shù)眾數(shù)80mn請根據(jù)以上提供的信息,解答下列問題:(1)填空:a=,b=;m=,n=;(2)已知該校學生500人,若每人每周用于課外閱讀的平均時間不少于80min為達標,請估計達標的學生數(shù);(3)設閱讀一本課外書的平均時間為260min,請選擇適當?shù)慕y(tǒng)計量,估計該校學生每人一年(按52周計)平均閱讀多少本課外書?21.(8分)如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.求證:DE是⊙O的切線.求DE的長.22.(10分)為提高節(jié)水意識,小申隨機統(tǒng)計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數(shù)據(jù)進行整理后,繪制成如圖所示的統(tǒng)計圖.(單位:升)(1)求這7天內(nèi)小申家每天用水量的平均數(shù)和中位數(shù);(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據(jù)統(tǒng)計圖中的信息,給小申家提出一條合理的節(jié)約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節(jié)約用水量.23.(12分)解不等式:﹣≤124.一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關于加滿油后已行駛的路程(千米)的函數(shù)圖象.根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;求關于的函數(shù)關系式,并計算該汽車在剩余油量5升時,已行駛的路程.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】

根據(jù)異號兩數(shù)相加的法則進行計算即可.【詳解】解:因為-2,3異號,且|-2|<|3|,所以-2+3=1.故選A.【點睛】本題主要考查了異號兩數(shù)相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值.2、A【解析】試題分析:0.000005035m,用科學記數(shù)法表示該數(shù)為5.035×10﹣6,故選A.考點:科學記數(shù)法—表示較小的數(shù).3、C【解析】試題解析:設2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.4、B【解析】試題分析:由數(shù)軸可知,a<-2,A、a的相反數(shù)>2,故本選項正確,不符合題意;B、a的相反數(shù)≠2,故本選項錯誤,符合題意;C、a的絕對值>2,故本選項正確,不符合題意;D、2a<0,故本選項正確,不符合題意.故選B.考點:實數(shù)與數(shù)軸.5、B【解析】

根據(jù)倒數(shù)的定義解答即可.【詳解】A、只有0沒有倒數(shù),該項錯誤;B、﹣1的倒數(shù)是﹣1,該項正確;C、0沒有倒數(shù),該項錯誤;D、小于1的正分數(shù)的倒數(shù)大于1,1的倒數(shù)等于1,該項錯誤.故選B.【點睛】本題主要考查倒數(shù)的定義:兩個實數(shù)的乘積是1,則這兩個數(shù)互為倒數(shù),熟練掌握這個知識點是解答本題的關鍵.6、A【解析】根據(jù)銳角三角函數(shù)的性質(zhì),可知cosA==,然后根據(jù)AC=2,解方程可求得AB=3.故選A.點睛:此題主要考查了解直角三角形,解題關鍵是明確直角三角形中,余弦值cosA=,然后帶入數(shù)值即可求解.7、A【解析】【分析】由根與系數(shù)的關系可得a+b=-1然后根據(jù)所給的新定義運算a?b=2ab對式子(a+1)?a-(b+1)?b用新定義運算展開整理后代入進行求解即可.【詳解】∵a,b是方程x2+x-m=0(m>0)的兩個根,∴a+b=-1,∵定義運算:a?b=2ab,∴(a+1)?a-(b+1)?b=2a(a+1)-2b(b+1)=2a2+2a-2b2-2b=2(a+b)(a-b)+2(a-b)=-2(a-b)+2(a-b)=0,故選A.【點睛】本題考查了一元二次方程根與系數(shù)的關系,新定義運算等,理解并能運用新定義運算是解題的關鍵.8、B【解析】

先找出滑雪項目圖案的張數(shù),結合5張形狀、大小、質(zhì)地均相同的卡片,再根據(jù)概率公式即可求解.【詳解】∵有5張形狀、大小、質(zhì)地均相同的卡片,滑雪項目圖案的有高山滑雪和單板滑雪2張,∴從中隨機抽取一張,抽出的卡片正面恰好是滑雪項目圖案的概率是.故選B.【點睛】本題考查了簡單事件的概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、A【解析】

取CB的中點G,連接MG,根據(jù)等邊三角形的性質(zhì)可得BH=BG,再求出∠HBN=∠MBG,根據(jù)旋轉的性質(zhì)可得MB=NB,然后利用“邊角邊”證明∴△MBG≌△NBH,再根據(jù)全等三角形對應邊相等可得HN=MG,然后根據(jù)垂線段最短可得MG⊥CH時最短,再根據(jù)∠BCH=30°求解即可.【詳解】如圖,取BC的中點G,連接MG,∵旋轉角為60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等邊△ABC的對稱軸,∴HB=AB,∴HB=BG,又∵MB旋轉到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根據(jù)垂線段最短,MG⊥CH時,MG最短,即HN最短,此時∵∠BCH=×60°=30°,CG=AB=×2a=a,∴MG=CG=×a=,∴HN=,故選A.【點睛】本題考查了旋轉的性質(zhì),等邊三角形的性質(zhì),全等三角形的判定與性質(zhì),垂線段最短的性質(zhì),作輔助線構造出全等三角形是解題的關鍵,也是本題的難點.10、B【解析】解:第一個圖是軸對稱圖形,又是中心對稱圖形;第二個圖是軸對稱圖形,不是中心對稱圖形;第三個圖是軸對稱圖形,又是中心對稱圖形;第四個圖是軸對稱圖形,不是中心對稱圖形;既是軸對稱圖形,又是中心對稱圖形的有2個.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、②③【解析】分析:根據(jù)隨機事件發(fā)生的“頻率”與“概率”的關系進行分析解答即可.詳解:(1)由表中的數(shù)據(jù)可知,當實驗種子數(shù)量為100時,兩種種子的發(fā)芽率雖然都是96%,但結合后續(xù)實驗數(shù)據(jù)可知,此時的發(fā)芽率并不穩(wěn)定,故不能確定兩種種子發(fā)芽的概率就是96%,所以①中的說法不合理;(2)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,故可以估計A種種子發(fā)芽的概率是98%,所以②中的說法是合理的;(3)由表中數(shù)據(jù)可知,隨著實驗次數(shù)的增加,A種種子發(fā)芽的頻率逐漸穩(wěn)定在98%左右,而B種種子發(fā)芽的頻率穩(wěn)定在97%左右,故可以估計在相同條件下,A種種子發(fā)芽率大于B種種子發(fā)芽率,所以③中的說法是合理的.故答案為:②③.點睛:理解“隨機事件發(fā)生的頻率與概率之間的關系”是正確解答本題的關鍵.12、【解析】

過C作CD⊥x軸于點D,則可證得△AOB≌△CDA,可求得CD和OD的長,可求得C點坐標,利用待定系數(shù)法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點睛】本題考查了待定系數(shù)法及全等三角形的判定和性質(zhì),構造全等三角形求得C點坐標是解題的關鍵.13、40【解析】如圖,∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°﹣50°=40°,故答案為:40.14、10,1,1【解析】

作CD⊥x軸于D,CE⊥OB于E,由勾股定理得出AB=10,OC==1,求出BE=OB﹣OE=4,得出OE=BE,由線段垂直平分線的性質(zhì)得出BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,由三角形面積公式即可得出△OMN的面積.【詳解】解:作CD⊥x軸于D,CE⊥OB于E,如圖所示:由題意得:OA=1,OB=8,∵∠AOB=90°,∴AB==10;∵點C的坐標(﹣2,4),∴OC==1,OE=4,∴BE=OB﹣OE=4,∴OE=BE,∴BC=OC=1;當t=3時,N到達C點,M到達OA的中點,OM=3,ON=OC=1,∴△OMN的面積S=×3×4=1;故答案為:10,1,1.【點睛】本題考查了勾股定理、坐標與圖形性質(zhì)、線段垂直平分線的性質(zhì)、三角形面積公式等知識;熟練掌握勾股定理是解題的關鍵.15、5或1.【解析】

先依據(jù)勾股定理求得AB的長,然后由翻折的性質(zhì)可知:AB′=5,DB=DB′,接下來分為∠B′DE=90°和∠B′ED=90°,兩種情況畫出圖形,設DB=DB′=x,然后依據(jù)勾股定理列出關于x的方程求解即可.【詳解】∵Rt△ABC紙片中,∠C=90°,AC=6,BC=8,∴AB=5,∵以AD為折痕△ABD折疊得到△AB′D,∴BD=DB′,AB′=AB=5.如圖1所示:當∠B′DE=90°時,過點B′作B′F⊥AF,垂足為F.設BD=DB′=x,則AF=6+x,F(xiàn)B′=8-x.在Rt△AFB′中,由勾股定理得:AB′5=AF5+FB′5,即(6+x)5+(8-x)5=55.解得:x1=5,x5=0(舍去).∴BD=5.如圖5所示:當∠B′ED=90°時,C與點E重合.∵AB′=5,AC=6,∴B′E=5.設BD=DB′=x,則CD=8-x.在Rt△′BDE中,DB′5=DE5+B′E5,即x5=(8-x)5+55.解得:x=1.∴BD=1.綜上所述,BD的長為5或1.16、【解析】

設該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關鍵.三、解答題(共8題,共72分)17、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據(jù)二次函數(shù)的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(jù)(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據(jù)相似三角形性質(zhì)得,

解得:a=3(舍去);②△AOD∽△CPB,根據(jù)相似三角形性質(zhì)得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據(jù)已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據(jù)兩點間的距離公式得一個關于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數(shù)、相似三角形的性質(zhì)、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應用相關知識是解題的關鍵.18、(1)(﹣4,1);(2)(1,4);(3)見解析;(4)P(﹣3,0).【解析】

(1)先建立平面直角坐標系,再確定B的坐標;(2)根據(jù)旋轉要求畫出△A1B1C1,再寫出點B1的坐標;(3)根據(jù)位似的要求,作出△A2B2C2;(4)作點B關于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求.【詳解】解:(1)如圖所示,點B的坐標為(﹣4,1);(2)如圖,△A1B1C1即為所求,點B1的坐標(1,4);(3)如圖,△A2B2C2即為所求;(4)如圖,作點B關于x軸的對稱點B',連接B'B1,交x軸于點P,則點P即為所求,P(﹣3,0).【點睛】本題考核知識點:位似,軸對稱,旋轉.解題關鍵點:理解位似,軸對稱,旋轉的意義.19、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據(jù)的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求一次函數(shù)解析式,坐標與圖形性質(zhì),勾股定理,等腰三角形的判定,以及一次函數(shù)與坐標軸的交點,熟練掌握性質(zhì)及定理是解本題的關鍵,并注意運用分類討論的思想解決問題.20、(1)a=5,b=4;m=81,n=81;(2)300人;(3)16本【解析】

(1)根據(jù)統(tǒng)計表收集數(shù)據(jù)可求a,b,再根據(jù)中位數(shù)、眾數(shù)的定義可求m,n;(2)達標的學生人數(shù)=總人數(shù)×達標率,依此即可求解;(3)本題需先求出閱讀課外書的總時間,再除以平均閱讀一本課外書的時間即可得出結果.【詳解】解:(1)由統(tǒng)計表收集數(shù)據(jù)可知a=5,b=4,m=81,n=81;(2)(人).答:估計達標的學生有300人;(3)80×52÷260=16(本).答:估計該校學生每人一年(按52周計算)平均閱讀16本課外書.【點睛】本題主要考查統(tǒng)計表以及中位數(shù),眾數(shù),估計達標人數(shù)等,能夠從統(tǒng)計表中獲取有效信息是解題的關鍵.21、(1)詳見解析;(2)4.【解析】試題分析:(1)連結OD,由AD平分∠BAC,OA=OD,可證得∠ODA=∠DAE,由平行線的性質(zhì)可得OD∥AE,再由DE⊥AC即可得OE⊥DE,即DE是⊙O的切線;(2)過點O作OF⊥AC于點F,由垂徑定理可得AF=CF=3,再由勾股定理求得OF=4,再判定四邊形OFED是矩形,即可得DE=OF=4.試題解析:(1)連結OD,∵AD平分∠B

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論