2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第1頁
2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第2頁
2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第3頁
2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第4頁
2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北省襄陽市樊城區(qū)太平店鎮(zhèn)重點中學(xué)中考數(shù)學(xué)模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.將分別標(biāo)有“孔”“孟”“之”“鄉(xiāng)”漢字的四個小球裝在一個不透明的口袋中,這些球除漢字外無其他差別,每次摸球前先攪拌均勻.隨機摸出一球,不放回;再隨機摸出一球.兩次摸出的球上的漢字能組成“孔孟”的概率是()A. B. C. D.2.一、單選題在反比例函數(shù)的圖象中,陰影部分的面積不等于4的是()A. B. C. D.3.如圖,等腰三角形ABC的底邊BC長為4,面積是16,腰AC的垂直平分線EF分別交AC,AB邊于E,F(xiàn)點若點D為BC邊的中點,點M為線段EF上一動點,則周長的最小值為A.6 B.8 C.10 D.124.初三(1)班的座位表如圖所示,如果如圖所示建立平面直角坐標(biāo)系,并且“過道也占一個位置”,例如小王所對應(yīng)的坐標(biāo)為(3,2),小芳的為(5,1),小明的為(10,2),那么小李所對應(yīng)的坐標(biāo)是()A.(6,3) B.(6,4) C.(7,4) D.(8,4)5.如圖,⊙O的半徑OC與弦AB交于點D,連結(jié)OA,AC,CB,BO,則下列條件中,無法判斷四邊形OACB為菱形的是()A.∠DAC=∠DBC=30° B.OA∥BC,OB∥AC C.AB與OC互相垂直 D.AB與OC互相平分6.計算的結(jié)果等于()A.-5 B.5 C. D.7.函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則m的值為()A.0 B.0或2 C.0或2或﹣2 D.2或﹣28.分式的值為0,則x的取值為()A.x=-3 B.x=3 C.x=-3或x=1 D.x=3或x=-19.在平面直角坐標(biāo)系中,二次函數(shù)y=a(x–h)2+k(a<0)的圖象可能是A. B.C. D.10.如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是()A.1,2,3 B.1,1, C.1,1, D.1,2,二、填空題(本大題共6個小題,每小題3分,共18分)11.等腰三角形一邊長為8,另一邊長為5,則此三角形的周長為_____.12.在△ABC中,∠C=90°,sinA=,BC=4,則AB值是_____.13.從-5,-,-,-1,0,2,π這七個數(shù)中隨機抽取一個數(shù),恰好為負整數(shù)的概率為______.14.如圖,是由一些大小相同的小正方體搭成的幾何體分別從正面看和從上面看得到的平面圖形,則搭成該幾何體的小正方體最多是_______個.15.空氣質(zhì)量指數(shù),簡稱AQI,如果AQI在0~50空氣質(zhì)量類別為優(yōu),在51~100空氣質(zhì)量類別為良,在101~150空氣質(zhì)量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數(shù)分布直方圖如圖所示.已知每天的AQI都是整數(shù),那么空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為______%.16.如圖,AB是圓O的直徑,AC是圓O的弦,AB=2,∠BAC=30°.在圖中畫出弦AD,使AD=1,則∠CAD的度數(shù)為_____°.三、解答題(共8題,共72分)17.(8分)解方程組.18.(8分)如圖,已知二次函數(shù)的圖象與x軸交于A,B兩點,與y軸交于點C,的半徑為,P為上一動點.點B,C的坐標(biāo)分別為______,______;是否存在點P,使得為直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;連接PB,若E為PB的中點,連接OE,則OE的最大值______.19.(8分)下面是“作三角形一邊上的高”的尺規(guī)作圖過程.已知:△ABC.求作:△ABC的邊BC上的高AD.作法:如圖2,(1)分別以點B和點C為圓心,BA,CA為半徑作弧,兩弧相交于點E;(2)作直線AE交BC邊于點D.所以線段AD就是所求作的高.請回答:該尺規(guī)作圖的依據(jù)是______.20.(8分)水龍頭關(guān)閉不緊會造成滴水,小明用可以顯示水量的容器做圖①所示的試驗,并根據(jù)試驗數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時間t(h)的函數(shù)關(guān)系圖象,請結(jié)合圖象解答下列問題:容器內(nèi)原有水多少?求W與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一天的滴水量是多少升?圖①圖②21.(8分)為營造“安全出行”的良好交通氛圍,實時監(jiān)控道路交迸,某市交管部門在路口安裝的高清攝像頭如圖所示,立桿MA與地面AB垂直,斜拉桿CD與AM交于點C,橫桿DE∥AB,攝像頭EF⊥DE于點E,AC=55米,CD=3米,EF=0.4米,∠CDE=162°.求∠MCD的度數(shù);求攝像頭下端點F到地面AB的距離.(精確到百分位)22.(10分)在平面直角坐標(biāo)系xOy中,對于P,Q兩點給出如下定義:若點P到兩坐標(biāo)軸的距離之和等于點Q到兩坐標(biāo)軸的距離之和,則稱P,Q兩點為同族點.下圖中的P,Q兩點即為同族點.(1)已知點A的坐標(biāo)為(﹣3,1),①在點R(0,4),S(2,2),T(2,﹣3)中,為點A的同族點的是;②若點B在x軸上,且A,B兩點為同族點,則點B的坐標(biāo)為;(2)直線l:y=x﹣3,與x軸交于點C,與y軸交于點D,①M為線段CD上一點,若在直線x=n上存在點N,使得M,N兩點為同族點,求n的取值范圍;②M為直線l上的一個動點,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,直接寫出m的取值范圍.23.(12分)閱讀(1)閱讀理解:如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是________;(2)問題解決:如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;(3)問題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E,F(xiàn)兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關(guān)系,并加以證明.24.小強想知道湖中兩個小亭A、B之間的距離,他在與小亭A、B位于同一水平面且東西走向的湖邊小道I上某一觀測點M處,測得亭A在點M的北偏東30°,亭B在點M的北偏東60°,當(dāng)小明由點M沿小道I向東走60米時,到達點N處,此時測得亭A恰好位于點N的正北方向,繼續(xù)向東走30米時到達點Q處,此時亭B恰好位于點Q的正北方向,根據(jù)以上測量數(shù)據(jù),請你幫助小強計算湖中兩個小亭A、B之間的距離.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】

根據(jù)簡單概率的計算公式即可得解.【詳解】一共四個小球,隨機摸出一球,不放回;再隨機摸出一球一共有12中可能,其中能組成孔孟的有2種,所以兩次摸出的球上的漢字能組成“孔孟”的概率是.故選B.考點:簡單概率計算.2、B【解析】

根據(jù)反比例函數(shù)中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【點睛】主要考查了反比例函數(shù)中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)??疾榈囊粋€知識點;這里體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標(biāo)軸、向坐標(biāo)軸作垂線所圍成的直角三角形面積S的關(guān)系即S=|k|.3、C【解析】

連接AD,由于△ABC是等腰三角形,點D是BC邊的中點,故AD⊥BC,再根據(jù)三角形的面積公式求出AD的長,再再根據(jù)EF是線段AC的垂直平分線可知,點C關(guān)于直線EF的對稱點為點A,故AD的長為CM+MD的最小值,由此即可得出結(jié)論.【詳解】連接AD,∵△ABC是等腰三角形,點D是BC邊的中點,∴AD⊥BC,∴S△ABC=BC?AD=×4×AD=16,解得AD=8,∵EF是線段AC的垂直平分線,∴點C關(guān)于直線EF的對稱點為點A,∴AD的長為CM+MD的最小值,∴△CDM的周長最短=(CM+MD)+CD=AD+BC=8+×4=8+2=1.故選C.【點睛】本題考查的是軸對稱-最短路線問題,熟知等腰三角形三線合一的性質(zhì)是解答此題的關(guān)鍵.4、C【解析】

根據(jù)題意知小李所對應(yīng)的坐標(biāo)是(7,4).故選C.5、C【解析】(1)∵∠DAC=∠DBC=30°,∴∠AOC=∠BOC=60°,又∵OA=OC=OB,∴△AOC和△OBC都是等邊三角形,∴OA=AC=OC=BC=OB,∴四邊形OACB是菱形;即A選項中的條件可以判定四邊形OACB是菱形;(2)∵OA∥BC,OB∥AC,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即B選項中的條件可以判定四邊形OACB是菱形;(3)由OC和AB互相垂直不能證明到四邊形OACB是菱形,即C選項中的條件不能判定四邊形OACB是菱形;(4)∵AB與OC互相平分,∴四邊形OACB是平行四邊形,又∵OA=OB,∴四邊形OACB是菱形,即由D選項中的條件能夠判定四邊形OACB是菱形.故選C.6、A【解析】

根據(jù)有理數(shù)的除法法則計算可得.【詳解】解:15÷(-3)=-(15÷3)=-5,

故選:A.【點睛】本題主要考查有理數(shù)的除法,解題的關(guān)鍵是掌握有理數(shù)的除法法則:兩數(shù)相除,同號得正,異號得負,并把絕對值相除.7、C【解析】

根據(jù)函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,利用分類討論的方法可以求得m的值,本題得以解決.【詳解】解:∵函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,∴當(dāng)m=0時,y=2x+1,此時y=0時,x=﹣0.5,該函數(shù)與x軸有一個交點,當(dāng)m≠0時,函數(shù)y=mx2+(m+2)x+m+1的圖象與x軸只有一個交點,則△=(m+2)2﹣4m(m+1)=0,解得,m1=2,m2=﹣2,由上可得,m的值為0或2或﹣2,故選:C.【點睛】本題考查拋物線與x軸的交點,解答本題的關(guān)鍵是明確題意,利用分類討論的數(shù)學(xué)思想解答.8、A【解析】

分式的值為2的條件是:(2)分子等于2;(2)分母不為2.兩個條件需同時具備,缺一不可.據(jù)此可以解答本題.【詳解】∵原式的值為2,∴,∴(x-2)(x+3)=2,即x=2或x=-3;又∵|x|-2≠2,即x≠±2.∴x=-3.故選:A.【點睛】此題考查的是對分式的值為2的條件的理解,該類型的題易忽略分母不為2這個條件.9、B【解析】

根據(jù)題目給出的二次函數(shù)的表達式,可知二次函數(shù)的開口向下,即可得出答案.【詳解】二次函數(shù)y=a(x﹣h)2+k(a<0)二次函數(shù)開口向下.即B成立.故答案選:B.【點睛】本題考查的是簡單運用二次函數(shù)性質(zhì),解題的關(guān)鍵是熟練掌握二次函數(shù)性質(zhì).10、D【解析】

根據(jù)三角形三邊關(guān)系可知,不能構(gòu)成三角形,依此即可作出判定;

B、根據(jù)勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;

C、解直角三角形可知是頂角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,依此即可作出判定.【詳解】∵1+2=3,不能構(gòu)成三角形,故選項錯誤;

B、∵12+12=()2,是等腰直角三角形,故選項錯誤;

C、底邊上的高是=,可知是頂角120°,底角30°的等腰三角形,故選項錯誤;

D、解直角三角形可知是三個角分別是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定義,故選項正確.

故選D.二、填空題(本大題共6個小題,每小題3分,共18分)11、18或21【解析】當(dāng)腰為8時,周長為8+8+5=21;當(dāng)腰為5時,周長為5+5+8=18.故此三角形的周長為18或21.12、6【解析】

根據(jù)正弦函數(shù)的定義得出sinA=,即,即可得出AB的值.【詳解】∵sinA=,即,∴AB=1,故答案為1.【點睛】本題考查了解直角三角形,熟練掌握正弦函數(shù)的定義是解題的關(guān)鍵.13、【解析】

七個數(shù)中有兩個負整數(shù),故隨機抽取一個數(shù),恰好為負整數(shù)的概率是:【詳解】這七個數(shù)中有兩個負整數(shù):-5,-1

所以,隨機抽取一個數(shù),恰好為負整數(shù)的概率是:故答案為【點睛】本題考查隨機事件的概率的計算方法,能準確找出負整數(shù)的個數(shù),并熟悉等可能事件的概率計算公式是關(guān)鍵.14、7【解析】

首先利用從上面看而得出的俯視圖得出該幾何體的第一層是由幾個小正方體組成,然后進一步根據(jù)其從正面看得出的主視圖得知其第二層最多可以放幾個小正方體,然后進一步計算即可得出答案.【詳解】根據(jù)俯視圖可得出第一層由5個小正方體組成;再結(jié)合主視圖,該正方體第二層最多可放2個小正方體,∴,∴最多是7個,故答案為:7.【點睛】本題主要考查了三視圖的運用,熟練掌握三視圖的特性是解題關(guān)鍵.15、80【解析】【分析】先求出AQI在0~50的頻數(shù),再根據(jù)%,求出百分比.【詳解】由圖可知AQI在0~50的頻數(shù)為10,所以,空氣質(zhì)量類別為優(yōu)和良的天數(shù)共占總天數(shù)的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數(shù)據(jù)的分析.解題關(guān)鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.16、30或1.【解析】

根據(jù)題意作圖,由AB是圓O的直徑,可得∠ADB=∠AD′B=1°,繼而可求得∠DAB的度數(shù),則可求得答案.【詳解】解:如圖,∵AB是圓O的直徑,∴∠ADB=∠AD′B=1°,∵AD=AD′=1,AB=2,∴cos∠DAB=cosD′AB=,∴∠DAB=∠D′AB=60°,∵∠CAB=30°,∴∠CAD=30°,∠CAD′=1°.∴∠CAD的度數(shù)為:30°或1°.故答案為30或1.【點睛】本題考查圓周角定理;含30度角的直角三角形.三、解答題(共8題,共72分)17、或.【解析】

把y=x代入,解得x的值,然后即可求出y的值;【詳解】把(1)代入(2)得:x2+x﹣2=0,(x+2)(x﹣1)=0,解得:x=﹣2或1,當(dāng)x=﹣2時,y=﹣2,當(dāng)x=1時,y=1,∴原方程組的解是或.【點睛】本題考查了高次方程的解法,關(guān)鍵是用代入法先求出一個未知數(shù),再代入求出另一個未知數(shù).18、(1)B(1,0),C(0,﹣4);(2)點P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1).【解析】試題分析:(1)在拋物線解析式中令y=0可求得B點坐標(biāo),令x=0可求得C點坐標(biāo);(2)①當(dāng)PB與⊙相切時,△PBC為直角三角形,如圖1,連接BC,根據(jù)勾股定理得到BC=5,BP2的值,過P2作P2E⊥x軸于E,P2F⊥y軸于F,根據(jù)相似三角形的性質(zhì)得到=2,設(shè)OC=P2E=2x,CP2=OE=x,得到BE=1﹣x,CF=2x﹣4,于是得到FP2,EP2的值,求得P2的坐標(biāo),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2),②當(dāng)BC⊥PC時,△PBC為直角三角形,根據(jù)相似三角形的判定和性質(zhì)即可得到結(jié)論;(1)如圖1中,連接AP,由OB=OA,BE=EP,推出OE=AP,可知當(dāng)AP最大時,OE的值最大.試題解析:(1)在中,令y=0,則x=±1,令x=0,則y=﹣4,∴B(1,0),C(0,﹣4);故答案為1,0;0,﹣4;(2)存在點P,使得△PBC為直角三角形,分兩種情況:①當(dāng)PB與⊙相切時,△PBC為直角三角形,如圖(2)a,連接BC,∵OB=1.OC=4,∴BC=5,∵CP2⊥BP2,CP2=,∴BP2=,過P2作P2E⊥x軸于E,P2F⊥y軸于F,則△CP2F∽△BP2E,四邊形OCP2B是矩形,∴=2,設(shè)OC=P2E=2x,CP2=OE=x,∴BE=1﹣x,CF=2x﹣4,∴=2,∴x=,2x=,∴FP2=,EP2=,∴P2(,﹣),過P1作P1G⊥x軸于G,P1H⊥y軸于H,同理求得P1(﹣1,﹣2);②當(dāng)BC⊥PC時,△PBC為直角三角形,過P4作P4H⊥y軸于H,則△BOC∽△CHP4,∴=,∴CH=,P4H=,∴P4(,﹣﹣4);同理P1(﹣,﹣4);綜上所述:點P的坐標(biāo)為:(﹣1,﹣2)或(,)或(,﹣﹣4)或(﹣,﹣4);(1)如圖(1),連接AP,∵OB=OA,BE=EP,∴OE=AP,∴當(dāng)AP最大時,OE的值最大,∵當(dāng)P在AC的延長線上時,AP的值最大,最大值=,∴OE的最大值為.故答案為.19、到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線【解析】

利用作法和線段垂直平分線定理的逆定理可得到BC垂直平分AE,然后根據(jù)三角形高的定義得到AD為高【詳解】解:由作法得BC垂直平分AE,所以該尺規(guī)作圖的依據(jù)為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.故答案為到一條線段兩個端點距離相等的點,在這條線段的垂直平分線上;三角形的高的定義;兩點確定一條直線.【點睛】此題考查三角形高的定義,解題的關(guān)鍵在于利用線段垂直平分線定理的逆定理求解.20、(1)0.3L;(2)在這種滴水狀態(tài)下一天的滴水量為9.6L.【解析】

(1)根據(jù)點的實際意義可得;(2)設(shè)與之間的函數(shù)關(guān)系式為,待定系數(shù)法求解可得,計算出時的值,再減去容器內(nèi)原有的水量即可.【詳解】(1)由圖象可知,容器內(nèi)原有水0.3L.(2)由圖象可知W與t之間的函數(shù)圖象經(jīng)過點(0,0.3),故設(shè)函數(shù)關(guān)系式為W=kt+0.3.又因為函數(shù)圖象經(jīng)過點(1.5,0.9),代入函數(shù)關(guān)系式,得1.5k+0.3=0.9,解得k=0.4.故W與t之間的函數(shù)關(guān)系式為W=0.4t+0.3.當(dāng)t=24時,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在這種滴水狀態(tài)下一天的滴水量為9.6L.【點睛】本題考查了一次函數(shù)的應(yīng)用,關(guān)鍵是利用待定系數(shù)法正確求出一次函數(shù)的解析式.21、(1)(2)6.03米【解析】

分析:延長ED,AM交于點P,由∠CDE=162°及三角形外角的性質(zhì)可得出結(jié)果;(2)利用解直角三角形求出PC,再利用PC+AC-EF即可得解.詳解:(1)如圖,延長ED,AM交于點P,∵DE∥AB,∴,即∠MPD=90°∵∠CDE=162°∴(2)如圖,在Rt△PCD中,CD=3米,∴PC=米∵AC=5.5米,EF=0.4米,∴米答:攝像頭下端點F到地面AB的距離為6.03米.點睛:本題考查了解直角三角形的應(yīng)用,解決此類問題要了解角之間的關(guān)系,找到已知和未知相關(guān)聯(lián)的的直角三角形,當(dāng)圖形中沒有直角三角形時,要通過作高線或垂線構(gòu)造直角三角形.22、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.【解析】

(1)∵點A的坐標(biāo)為(?2,1),∴2+1=4,點R(0,4),S(2,2),T(2,?2)中,0+4=4,2+2=4,2+2=5,∴點A的同族點的是R,S;故答案為R,S;②∵點B在x軸上,∴點B的縱坐標(biāo)為0,設(shè)B(x,0),則|x|=4,∴x=±4,∴B(?4,0)或(4,0);故答案為(?4,0)或(4,0);(2)①由題意,直線與x軸交于C(2,0),與y軸交于D(0,).點M在線段CD上,設(shè)其坐標(biāo)為(x,y),則有:,,且.點M到x軸的距離為,點M到y(tǒng)軸的距離為,則.∴點M的同族點N滿足橫縱坐標(biāo)的絕對值之和為2.即點N在右圖中所示的正方形CDEF上.∵點E的坐標(biāo)為(,0),點N在直線上,∴.②如圖,設(shè)P(m,0)為圓心,為半徑的圓與直線y=x?2相切,∴PC=2,∴OP=1,觀察圖形可知,當(dāng)m≥1時,若以(m,0)為圓心,為半徑的圓上存在點N,使得M,N兩點為同族點,再根據(jù)對稱性可知,m≤也滿足條件,∴滿足條件的m的范圍:m≤或m≥123、(1)2<AD<8;(2)證明見解析;(3)BE+DF=EF;理由見解析.【解析】試題分析:(1)延長AD至E,使DE=AD,由SAS證明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三邊關(guān)系求出AE的取值范圍,即可得出AD的取值范圍;(2)延長FD至點M,使DM=DF,連接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由線段垂直平分線的性質(zhì)得出EM=EF,在△BME中,由三角形的三邊關(guān)系得出BE+BM>EM即可得出結(jié)論;(3)延長AB至點N,使BN=DF,連接CN,證出∠NBC=∠D,由SAS證明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,證出∠ECN=70°=∠ECF,再由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論