版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆江蘇省徐州市西苑中學中考數(shù)學五模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.2.某市從今年1月1日起調(diào)整居民用水價格,每立方米水費上漲.小麗家去年12月份的水費是15元,而今年5月的水費則是10元.已知小麗家今年5月的用水量比去年12月的用水量多5m1.求該市今年居民用水的價格.設去年居民用水價格為x元/m1,根據(jù)題意列方程,正確的是()A. B.C. D.3.自1993年起,聯(lián)合國將每年的3月11日定為“世界水日”,宗旨是喚起公眾的節(jié)水意識,加強水資源保護.某校在開展“節(jié)約每一滴水”的活動中,從初三年級隨機選出10名學生統(tǒng)計出各自家庭一個月的節(jié)約用水量,有關數(shù)據(jù)整理如下表.節(jié)約用水量(單位:噸)11.11.411.5家庭數(shù)46531這組數(shù)據(jù)的中位數(shù)和眾數(shù)分別是()A.1.1,1.1; B.1.4,1.1; C.1.3,1.4; D.1.3,1.1.4.若一個三角形的兩邊長分別為5和7,則該三角形的周長可能是()A.12 B.14 C.15 D.255.下列運算正確的是()A.a(chǎn)2?a4=a8 B.2a2+a2=3a4 C.a(chǎn)6÷a2=a3 D.(ab2)3=a3b66.如圖是由四個相同的小正方體堆成的物體,它的正視圖是()A. B. C. D.7.如圖,把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,若∠2=40°,則圖中∠1的度數(shù)為()A.115° B.120° C.130° D.140°8.如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下四個結論:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正確的結論有()A.1個 B.2個 C.3個 D.4個9.如圖,△ABC是⊙O的內(nèi)接三角形,AD⊥BC于D點,且AC=5,CD=3,BD=4,則⊙O的直徑等于()A.52 B.32 C.510.已知直線m∥n,將一塊含30°角的直角三角板ABC,按如圖所示方式放置,其中A、B兩點分別落在直線m、n上,若∠1=25°,則∠2的度數(shù)是()A.25° B.30° C.35° D.55°二、填空題(本大題共6個小題,每小題3分,共18分)11.計算:(π﹣3)0﹣2-1=_____.12.如圖,AB是⊙O的直徑,AC與⊙O相切于點A,連接OC交⊙O于D,連接BD,若∠C=40°,則∠B=_____度.13.已知正比例函數(shù)的圖像經(jīng)過點M(-2,1)、Ax1,y1、Bx2,y14.如圖,10塊相同的小長方形墻磚拼成一個大長方形,設小長方形墻磚的長和寬分別為x厘米和y厘米,則列出的方程組為_____.15.如圖,無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,如果無人機距地面高度CD為米,點A、D、B在同一水平直線上,則A、B兩點間的距離是_____米.(結果保留根號)16.如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.三、解答題(共8題,共72分)17.(8分)某科技開發(fā)公司研制出一種新型產(chǎn)品,每件產(chǎn)品的成本為2500元,銷售單價定為3200元.在該產(chǎn)品的試銷期間,為了促銷,鼓勵商家購買該新型品,公司決定商家一次購買這種新型產(chǎn)品不超過10件時,每件按3200元銷售:若一次購買該種產(chǎn)品超過10件時,每多購買一件,所購買的全部產(chǎn)品的銷售單價均降低5元,但銷售單價均不低于2800元.商家一次購買這種產(chǎn)品多少件時,銷售單價恰好為2800元?設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,求y(元)與x(件)之間的函數(shù)關系式,并寫出自變量x的取值范圍該公司的銷售人員發(fā)現(xiàn):當商家一次購買產(chǎn)品的件數(shù)超過某一數(shù)量時,會出現(xiàn)隨著一次購買的數(shù)量的增多,公司所獲的利潤反而減少這一情況.為使商家一次購買的數(shù)量越多,公司所獲的利潤越大,公司應將最低銷售單價調(diào)整為多少元?(其它銷售條件不變)18.(8分)二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠1)中的x與y的部分對應值如表x
﹣1
1
1
3
y
﹣1
3
5
3
下列結論:①ac<1;②當x>1時,y的值隨x值的增大而減小.③3是方程ax2+(b﹣1)x+c=1的一個根;④當﹣1<x<3時,ax2+(b﹣1)x+c>1.其中正確的結論是.19.(8分)如圖,點A是直線AM與⊙O的交點,點B在⊙O上,BD⊥AM,垂足為D,BD與⊙O交于點C,OC平分∠AOB,∠B=60°.求證:AM是⊙O的切線;若⊙O的半徑為4,求圖中陰影部分的面積(結果保留π和根號).20.(8分)解不等式組:,并將它的解集在數(shù)軸上表示出來.21.(8分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于A(﹣2,1),B(1,n)兩點.求反比例函數(shù)和一次函數(shù)的解析式;根據(jù)圖象寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.22.(10分)某公司銷售A,B兩種品牌的教學設備,這兩種教學設備的進價和售價如表所示AB進價(萬元/套)1.51.2售價(萬元/套)1.81.4該公司計劃購進兩種教學設備若干套,共需66萬元,全部銷售后可獲毛利潤12萬元.(1)該公司計劃購進A,B兩種品牌的教學設備各多少套?(2)通過市場調(diào)研,該公司決定在原計劃的基礎上,減少A種設備的購進數(shù)量,增加B種設備的購進數(shù)量,已知B種設備增加的數(shù)量是A種設備減少的數(shù)量的1.5倍.若用于購進這兩種教學設備的總資金不超過68萬元,問A種設備購進數(shù)量至多減少多少套?23.(12分)高考英語聽力測試期間,需要杜絕考點周圍的噪音.如圖,點A是某市一高考考點,在位于A考點南偏西15°方向距離125米的點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,告知在位于C點北偏東75°方向的F點處突發(fā)火災,消防隊必須立即趕往救火.已知消防車的警報聲傳播半徑為100米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?說明理由.(取1.732)24.如圖,在菱形ABCD中,E、F分別為AD和CD上的點,且AE=CF,連接AF、CE交于點G,求證:點G在BD上.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
首先解出各個不等式的解集,然后求出這些解集的公共部分即可.【詳解】解:由x﹣2≥0,得x≥2,由x+1<0,得x<﹣1,所以不等式組無解,故選B.【點睛】解不等式組時要注意解集的確定原則:同大取大,同小取小,大小小大取中間,大大小小無解了.2、A【解析】解:設去年居民用水價格為x元/cm1,根據(jù)題意列方程:,故選A.3、D【解析】分析:中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù),眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.詳解:這組數(shù)據(jù)的中位數(shù)是;這組數(shù)據(jù)的眾數(shù)是1.1.故選D.點睛:本題屬于基礎題,考查了確定一組數(shù)據(jù)的中位數(shù)和眾數(shù)的能力,要明確定義,一些學生往往對這個概念掌握不清楚,計算方法不明確而誤選其它選項,注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù).4、C【解析】
先根據(jù)三角形三條邊的關系求出第三條邊的取值范圍,進而求出周長的取值范圍,從而可的求出符合題意的選項.【詳解】∴三角形的兩邊長分別為5和7,∴2<第三條邊<12,∴5+7+2<三角形的周長<5+7+12,即14<三角形的周長<24,故選C.【點睛】本題考查了三角形三條邊的關系:三角形任意兩邊之和大于第三邊,任意兩邊之差小于第三邊,據(jù)此解答即可.5、D【解析】根據(jù)同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數(shù)冪的乘法,合并同類項,同底數(shù)冪的除法,冪的乘方與積的乘方.6、A【解析】【分析】根據(jù)正視圖是從物體的正面看得到的圖形即可得.【詳解】從正面看可得從左往右2列正方形的個數(shù)依次為2,1,如圖所示:故選A.【點睛】本題考查了三視圖的知識,正視圖是從物體的正面看得到的視圖.7、A【解析】解:∵把一張矩形紙片ABCD沿EF折疊后,點A落在CD邊上的點A′處,點B落在點B′處,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故選A.8、C【解析】
根據(jù)圖像可得:a<0,b<0,c=0,即abc=0,則①正確;當x=1時,y<0,即a+b+c<0,則②錯誤;根據(jù)對稱軸可得:-b2a=-3根據(jù)函數(shù)與x軸有兩個交點可得:b2故選C.【點睛】本題考查二次函數(shù)的性質(zhì).能通過圖象分析a,b,c的正負,以及通過一些特殊點的位置得出a,b,c之間的關系是解題關鍵.9、A【解析】
連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB,∠ADC=90°,利用勾股定理求得AD=AC2-DC2=52-【詳解】解:如圖,連接AO并延長到E,連接BE.設AE=2R,則∠ABE=90°,∠AEB=∠ACB;∵AD⊥BC于D點,AC=5,DC=3,∴∠ADC=90°,∴AD=AC∴AB=在Rt△ABE與Rt△ADC中,∠ABE=∠ADC=90°,∠AEB=∠ACB,∴Rt△ABE∽Rt△ADC,∴ABAD即2R=AB?ACAD=4∴⊙O的直徑等于52故答案選:A.【點睛】本題主要考查了圓周角定理、勾股定理,解題的關鍵是掌握輔助線的作法.10、C【解析】
根據(jù)平行線的性質(zhì)即可得到∠3的度數(shù),再根據(jù)三角形內(nèi)角和定理,即可得到結論.【詳解】解:∵直線m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故選C.【點睛】本題考查平行線的性質(zhì),熟練掌握平行線的性質(zhì)是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、12【解析】
分別利用零指數(shù)冪a0=1(a≠0),負指數(shù)冪a-p=1a【詳解】解:(π﹣3)0﹣2-1=1-12=1故答案為:12【點睛】本題考查了零指數(shù)冪和負整數(shù)指數(shù)冪的運算,掌握運算法則是解題關鍵.12、25【解析】∵AC是⊙O的切線,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故答案為:25.13、>【解析】分析:根據(jù)正比例函數(shù)的圖象經(jīng)過點M(﹣1,1)可以求得該函數(shù)的解析式,然后根據(jù)正比例函數(shù)的性質(zhì)即可解答本題.詳解:設該正比例函數(shù)的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數(shù)的圖象經(jīng)過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數(shù)圖象上點的坐標特征,解答本題的關鍵是明確題意,利用正比例函數(shù)的性質(zhì)解答.14、【解析】
根據(jù)圖示可得:長方形的長可以表示為x+2y,長又是75厘米,故x+2y=75,長方形的寬可以表示為2x,或x+3y,故2x=3y+x,整理得x=3y,聯(lián)立兩個方程即可.【詳解】根據(jù)圖示可得,故答案是:.【點睛】此題主要考查了由實際問題抽象出二元一次方程組,關鍵是看懂圖示,分別表示出長方形的長和寬.15、100(1+)【解析】分析:如圖,利用平行線的性質(zhì)得∠A=60°,∠B=45°,在Rt△ACD中利用正切定義可計算出AD=100,在Rt△BCD中利用等腰直角三角形的性質(zhì)得BD=CD=100,然后計算AD+BD即可.詳解:如圖,∵無人機在空中C處測得地面A、B兩點的俯角分別為60°、45°,∴∠A=60°,∠B=45°,在Rt△ACD中,∵tanA=,∴AD==100,在Rt△BCD中,BD=CD=100,∴AB=AD+BD=100+100=100(1+).答:A、B兩點間的距離為100(1+)米.故答案為100(1+).點睛:本題考查了解直角三角形的應用﹣仰角俯角問題:解決此類問題要了解角之間的關系,找到與已知和未知相關聯(lián)的直角三角形,當圖形中沒有直角三角形時,要通過作高或垂線構造直角三角形.16、-3【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉(zhuǎn)30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數(shù)y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)進行線段的轉(zhuǎn)換與計算.三、解答題(共8題,共72分)17、(1)商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)當0≤x≤10時,y=700x,當10<x≤1時,y=﹣5x2+750x,當x>1時,y=300x;(3)公司應將最低銷售單價調(diào)整為2875元.【解析】
(1)設件數(shù)為x,則銷售單價為3200-5(x-10)元,根據(jù)銷售單價恰好為2800元,列方程求解;(2)由利潤y=(銷售單價-成本單價)×件數(shù),及銷售單價均不低于2800元,按0≤x≤10,10<x≤50兩種情況列出函數(shù)關系式;(3)由(2)的函數(shù)關系式,利用二次函數(shù)的性質(zhì)求利潤的最大值,并求出最大值時x的值,確定銷售單價.【詳解】(1)設商家一次購買這種產(chǎn)品x件時,銷售單價恰好為2800元.由題意得:3200﹣5(x﹣10)=2800,解得:x=1.答:商家一次購買這種產(chǎn)品1件時,銷售單價恰好為2800元;(2)設商家一次購買這種產(chǎn)品x件,開發(fā)公司所獲的利潤為y元,由題意得:當0≤x≤10時,y=(3200﹣2500)x=700x,當10<x≤1時,y=[3200﹣5(x﹣10)﹣2500]?x=﹣5x2+750x,當x>1時,y=(2800﹣2500)?x=300x;(3)因為要滿足一次購買數(shù)量越多,所獲利潤越大,所以y隨x增大而增大,函數(shù)y=700x,y=300x均是y隨x增大而增大,而y=﹣5x2+750x=﹣5(x﹣75)2+28125,在10<x≤75時,y隨x增大而增大.由上述分析得x的取值范圍為:10<x≤75時,即一次購買75件時,恰好是最低價,最低價為3200﹣5?(75﹣10)=2875元,答:公司應將最低銷售單價調(diào)整為2875元.【點睛】本題考查了一次、二次函數(shù)的性質(zhì)在實際生活中的應用.最大銷售利潤的問題常利二次函數(shù)的增減性來解答,我們首先要吃透題意,確定變量,建立函數(shù)模型,然后結合實際選擇最優(yōu)方案.18、①③④.【解析】試題分析:∵x=﹣1時y=﹣1,x=1時,y=3,x=1時,y=5,∴,解得,∴y=﹣x2+3x+3,∴ac=﹣1×3=﹣3<1,故①正確;對稱軸為直線,所以,當x>時,y的值隨x值的增大而減小,故②錯誤;方程為﹣x2+2x+3=1,整理得,x2﹣2x﹣3=1,解得x1=﹣1,x2=3,所以,3是方程ax2+(b﹣1)x+c=1的一個根,正確,故③正確;﹣1<x<3時,ax2+(b﹣1)x+c>1正確,故④正確;綜上所述,結論正確的是①③④.故答案為①③④.【考點】二次函數(shù)的性質(zhì).19、(1)見解析;(2)【解析】
(1)根據(jù)題意,可得△BOC的等邊三角形,進而可得∠BCO=∠BOC,根據(jù)角平分線的性質(zhì),可證得BD∥OA,根據(jù)∠BDM=90°,進而得到∠OAM=90°,即可得證;(2)連接AC,利用△AOC是等邊三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的長,則S陰影=S梯形OADC﹣S扇形OAC即可得解.【詳解】(1)證明:∵∠B=60°,OB=OC,∴△BOC是等邊三角形,∴∠1=∠3=60°,∵OC平分∠AOB,∴∠1=∠2,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA為⊙O的半徑,∴AM是⊙O的切線(2)解:連接AC,∵∠3=60°,OA=OC,∴△AOC是等邊三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD=2,∴S陰影=S梯形OADC﹣S扇形OAC=×(4+2)×2﹣.【點睛】本題主要考查切線的性質(zhì)與判定、扇形的面積等,解題關鍵在于用整體減去部分的方法計算.20、-1≤x<4,在數(shù)軸上表示見解析.【解析】試題分析:分別求出各不等式的解集,再求出其公共解集,并在數(shù)軸上表示出來即可.試題解析:,由①得,x<4;由②得,x??1.故不等式組的解集為:?1?x<4.在數(shù)軸上表示為:21、(1)y=,y=?x?1;(2)x<?2或0<x<1【解析】
(1)利用點A的坐標可求出反比例函數(shù)解析式,再把B(1,n)代入反比例函數(shù)解析式,即可求得n的值,于是得到一次函數(shù)的解析式;
(2)根據(jù)圖象和A,B兩點的坐標即可寫出一次函數(shù)的值大于反比例函數(shù)的值的x的取值范圍.【詳解】(1)∵A(?2,1)在反比例函數(shù)y=的圖象上,∴1=,解得m=?2.∴反比例函數(shù)解析式為y=,∵B(1,n)在反比例函數(shù)上,∴n=?2,∴B的坐標(1,?2),把A(?2,1),B(1,?2)代入y=kx+b得解得:∴一次函數(shù)的解析式為y=?x?1;(2)由圖像知:當x<?2或0<x<1時,一次函數(shù)的值大于反比例函數(shù)的值.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,屬于簡單題,熟悉函數(shù)圖像的性質(zhì)是解題關鍵.22、(1)該公司計劃購進A種品牌的教學設備20套,購進B種
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《子網(wǎng)掩碼的計算》課件
- 第6單元 科技文化與社會生活(B卷·能力提升練)(解析版)
- 百貨商店電器城保安工作總結
- 集裝箱散貨轉(zhuǎn)化公路運輸代理協(xié)議三篇
- 2023-2024年員工三級安全培訓考試題附參考答案【典型題】
- 乘除法應用題課件
- 2023年-2024年企業(yè)主要負責人安全培訓考試題附解析答案
- 教育資源整合研究報告
- 《督脈與腧穴》課件
- 云平臺下的供應鏈協(xié)同-洞察分析
- 阿里菜鳥裹裹云客服在線客服認證考試及答案
- 水庫防恐反恐應急預案
- 危險化學品銷售管理臺帳
- 五輸穴及臨床應用1
- 綠植租擺服務投標方案(完整技術標)
- 童話知識競賽課件
- 一氧化氮讓你遠離心腦血管病第(全書回顧綜合版)
- GB/T 12574-2023噴氣燃料總酸值測定法
- 2022年天津三源電力集團限公司社會招聘33人上岸筆試歷年難、易錯點考題附帶參考答案與詳解
- 2023-2024學年廣東廣州番禺區(qū)四年級數(shù)學第一學期期末綜合測試試題含答案
- 抑郁病診斷證明書
評論
0/150
提交評論