2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題含解析_第1頁
2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題含解析_第2頁
2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題含解析_第3頁
2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題含解析_第4頁
2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆湖南省邵陽市邵陽縣中考四模數(shù)學(xué)試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個2.一個數(shù)和它的倒數(shù)相等,則這個數(shù)是()A.1 B.0 C.±1 D.±1和03.如圖,是在直角坐標(biāo)系中圍棋子擺出的圖案,若再擺放一黑一白兩枚棋子,使9枚棋子組成的圖案既是軸對稱圖形又是中心對稱圖形,則這兩枚棋子的坐標(biāo)是()A.黑(3,3),白(3,1) B.黑(3,1),白(3,3)C.黑(1,5),白(5,5) D.黑(3,2),白(3,3)4.在平面直角坐標(biāo)系xOy中,若點P(3,4)在⊙O內(nèi),則⊙O的半徑r的取值范圍是()A.0<r<3 B.r>4 C.0<r<5 D.r>55.如圖,點A、B、C是⊙O上的三點,且四邊形ABCO是平行四邊形,OF⊥OC交圓O于點F,則∠BAF等于()A.12.5° B.15° C.20° D.22.5°6.已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程的兩實數(shù)根是A.x1=1,x2=-1 B.x1=1,x2=2C.x1=1,x2=0 D.x1=1,x2=37.在快速計算法中,法國的“小九九”從“一一得一”到“五五二十五”和我國的“小九九”算法是完全一樣的,而后面“六到九”的運算就改用手勢了.如計算8×9時,左手伸出3根手指,右手伸出4根手指,兩只手伸出手指數(shù)的和為7,未伸出手指數(shù)的積為2,則8×9=10×7+2=1.那么在計算6×7時,左、右手伸出的手指數(shù)應(yīng)該分別為()A.1,2 B.1,3C.4,2 D.4,38.已知:如圖,AD是△ABC的角平分線,且AB:AC=3:2,則△ABD與△ACD的面積之比為()A.3:2 B.9:4 C.2:3 D.4:99.下列各式計算正確的是()A.a(chǎn)2+2a3=3a5 B.a(chǎn)?a2=a3 C.a(chǎn)6÷a2=a3 D.(a2)3=a510.某大型企業(yè)員工總數(shù)為28600人,數(shù)據(jù)“28600”用科學(xué)記數(shù)法可表示為()A.0.286×105B.2.86×105C.28.6×103D.2.86×104二、填空題(共7小題,每小題3分,滿分21分)11.如圖是由幾個相同的小正方體搭建而成的幾何體的主視圖和俯視圖,則搭建這個幾何體所需要的小正方體至少為____個.12.若x=﹣1是關(guān)于x的一元二次方程x2+3x+m+1=0的一個解,則m的值為______.13.在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.14.一名模型賽車手遙控一輛賽車,先前進(jìn)1m,然后,原地逆時針方向旋轉(zhuǎn)角a(0°<α<180°).被稱為一次操作.若五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,則角α為15.用4塊完全相同的長方形拼成正方形(如圖),用不同的方法,計算圖中陰影部分的面積,可得到1個關(guān)于的等式為________.16.將一次函數(shù)的圖象平移,使其經(jīng)過點(2,3),則所得直線的函數(shù)解析式是______.17.如圖,AB是⊙O的直徑,弦CD交AB于點P,AP=2,BP=6,∠APC=30°,則CD的長為_______.三、解答題(共7小題,滿分69分)18.(10分)關(guān)于x的一元二次方程x2﹣x﹣(m+2)=0有兩個不相等的實數(shù)根.求m的取值范圍;若m為符合條件的最小整數(shù),求此方程的根.19.(5分)問題提出(1)如圖①,在矩形ABCD中,AB=2AD,E為CD的中點,則∠AEB∠ACB(填“>”“<”“=”);問題探究(2)如圖②,在正方形ABCD中,P為CD邊上的一個動點,當(dāng)點P位于何處時,∠APB最大?并說明理由;問題解決(3)如圖③,在一幢大樓AD上裝有一塊矩形廣告牌,其側(cè)面上、下邊沿相距6米(即AB=6米),下邊沿到地面的距離BD=11.6米.如果小剛的睛睛距離地面的高度EF為1.6米,他從遠(yuǎn)處正對廣告牌走近時,在P處看廣告效果最好(視角最大),請你在圖③中找到點P的位置,并計算此時小剛與大樓AD之間的距離.20.(8分)先化簡,再求值:÷(﹣x+1),其中x=sin30°+2﹣1+.21.(10分)如圖,已知反比例函數(shù)y=(x>0)的圖象與一次函數(shù)y=﹣x+4的圖象交于A和B(6,n)兩點.求k和n的值;若點C(x,y)也在反比例函數(shù)y=(x>0)的圖象上,求當(dāng)2≤x≤6時,函數(shù)值y的取值范圍.22.(10分)在Rt△ABC中,∠ACB=90°,以點A為圓心,AC為半徑,作⊙A交AB于點D,交CA的延長線于點E,過點E作AB的平行線EF交⊙A于點F,連接AF、BF、DF(1)求證:BF是⊙A的切線.(2)當(dāng)∠CAB等于多少度時,四邊形ADFE為菱形?請給予證明.23.(12分)八年級(1)班學(xué)生在完成課題學(xué)習(xí)“體質(zhì)健康測試中的數(shù)據(jù)分析”后,利用課外活動時間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試.現(xiàn)將項目選擇情況及訓(xùn)練后籃球定時定點投籃測試成績整理后作出如下統(tǒng)計圖.請你根據(jù)上面提供的信息回答下列問題:扇形圖中跳繩部分的扇形圓心角為度,該班共有學(xué)生人,訓(xùn)練后籃球定時定點投籃平均每個人的進(jìn)球數(shù)是.老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率.24.(14分)如圖,拋物線經(jīng)過點A(﹣2,0),點B(0,4).(1)求這條拋物線的表達(dá)式;(2)P是拋物線對稱軸上的點,聯(lián)結(jié)AB、PB,如果∠PBO=∠BAO,求點P的坐標(biāo);(3)將拋物線沿y軸向下平移m個單位,所得新拋物線與y軸交于點D,過點D作DE∥x軸交新拋物線于點E,射線EO交新拋物線于點F,如果EO=2OF,求m的值.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

根據(jù)軸對稱圖形和中心對稱圖形的定義對各個圖形進(jìn)行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180°后兩部分重合.2、C【解析】

根據(jù)倒數(shù)的定義即可求解.【詳解】的倒數(shù)等于它本身,故符合題意.

故選:.【點睛】主要考查倒數(shù)的概念及性質(zhì).倒數(shù)的定義:若兩個數(shù)的乘積是1,我們就稱這兩個數(shù)互為倒數(shù).3、A【解析】

首先根據(jù)各選項棋子的位置,進(jìn)而結(jié)合軸對稱圖形和中心對稱圖形的性質(zhì)判斷得出即可.【詳解】解:A、當(dāng)擺放黑(3,3),白(3,1)時,此時是軸對稱圖形,也是中心對稱圖形,故此選項正確;B、當(dāng)擺放黑(3,1),白(3,3)時,此時是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;C、當(dāng)擺放黑(1,5),白(5,5)時,此時不是軸對稱圖形也不是中心對稱圖形,故此選項錯誤;D、當(dāng)擺放黑(3,2),白(3,3)時,此時是軸對稱圖形不是中心對稱圖形,故此選項錯誤.故選:A.【點睛】此題主要考查了坐標(biāo)確定位置以及軸對稱圖形與中心對稱圖形的性質(zhì),利用已知確定各點位置是解題關(guān)鍵.4、D【解析】

先利用勾股定理計算出OP=1,然后根據(jù)點與圓的位置關(guān)系的判定方法得到r的范圍.【詳解】∵點P的坐標(biāo)為(3,4),∴OP1.∵點P(3,4)在⊙O內(nèi),∴OP<r,即r>1.故選D.【點睛】本題考查了點與圓的位置關(guān)系:點的位置可以確定該點到圓心距離與半徑的關(guān)系,反過來已知點到圓心距離與半徑的關(guān)系可以確定該點與圓的位置關(guān)系.5、B【解析】

解:連接OB,∵四邊形ABCO是平行四邊形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB為等邊三角形,∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°,由圓周角定理得∠BAF=∠BOF=15°故選:B6、B【解析】試題分析:∵二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),∴.∴.故選B.7、A【解析】試題分析:通過猜想得出數(shù)據(jù),再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和為3×10=30,30+4×3=42,故選A.點評:此題是定義新運算題型.通過閱讀規(guī)則,得出一般結(jié)論.解題關(guān)鍵是對號入座不要找錯對應(yīng)關(guān)系.8、A【解析】試題解析:過點D作DE⊥AB于E,DF⊥AC于F.∵AD為∠BAC的平分線,∴DE=DF,又AB:AC=3:2,故選A.點睛:角平分線上的點到角兩邊的距離相等.9、B【解析】

根據(jù)冪的乘方,底數(shù)不變指數(shù)相乘;同底數(shù)冪相除,底數(shù)不變,指數(shù)相減;同底數(shù)冪相乘,底數(shù)不變指數(shù)相加,對各選項分析判斷利用排除法求解【詳解】A.a2與2a3不是同類項,故A不正確;B.a?a2=a3,正確;C.原式=a4,故C不正確;D.原式=a6,故D不正確;故選:B.【點睛】此題考查同底數(shù)冪的乘法,冪的乘方與積的乘方,解題的關(guān)鍵在于掌握運算法則.10、D【解析】

用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10﹣n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可【詳解】28600=2.86×1.故選D.【點睛】此題主要考查了用科學(xué)記數(shù)法表示較大的數(shù),一般形式為a×10﹣n,其中1≤|a|<10,確定a與n的值是解題的關(guān)鍵二、填空題(共7小題,每小題3分,滿分21分)11、8【解析】

主視圖、俯視圖是分別從物體正面、上面看,所得到的圖形.【詳解】由俯視圖可知:底層最少有5個小立方體,由主視圖可知:第二層最少有2個小立方體,第三層最少有1個小正方體,∴搭成這個幾何體的小正方體的個數(shù)最少是5+2+1=8(個).故答案為:8【點睛】考查了由三視圖判斷幾何體的知識,根據(jù)題目中要求的以最少的小正方體搭建這個幾何體,可以想象出左視圖的樣子,然后根據(jù)“俯視圖打地基,正視圖瘋狂蓋,左視圖拆違章”很容易就知道小正方體的個數(shù).12、1【解析】試題分析:將x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.考點:一元二次方程的解.13、﹣4≤m≤﹣1【解析】

先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當(dāng)點B在點A的右側(cè),則m≤﹣4≤3m﹣1,當(dāng)點B在點A的左側(cè),則3m﹣1≤﹣4≤m,然后分別解關(guān)于m的不等式組即可.【詳解】解:當(dāng)y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當(dāng)點B在點A的右側(cè),則m≤﹣4≤3m﹣1,無解;當(dāng)點B在點A的左側(cè),則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點睛】本題考查了一次函數(shù)圖象上點的坐標(biāo)特征,根據(jù)直線y=﹣2x﹣1與線段AB有公共點找出關(guān)于m的一元一次不等式組是解題的關(guān)鍵.14、72°或144°【解析】

∵五次操作后,發(fā)現(xiàn)賽車回到出發(fā)點,∴正好走了一個正五邊形,因為原地逆時針方向旋轉(zhuǎn)角a(0°<α<180°),那么朝左和朝右就是兩個不同的結(jié)論所以∴角α=(5-2)?180°÷5=108°,則180°-108°=72°或者角α=(5-2)?180°÷5=108°,180°-72°÷2=144°15、(a+b)2﹣(a﹣b)2=4ab【解析】

根據(jù)長方形面積公式列①式,根據(jù)面積差列②式,得出結(jié)論.【詳解】S陰影=4S長方形=4ab①,S陰影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案為(a+b)2﹣(a﹣b)2=4ab.【點睛】本題考查了完全平方公式幾何意義的理解,此題有機地把代數(shù)與幾何圖形聯(lián)系在一起,利用幾何圖形的面積公式直接得出或由其圖形的和或差得出.16、【解析】試題分析:解:設(shè)y=x+b,∴3=2+b,解得:b=1.∴函數(shù)解析式為:y=x+1.故答案為y=x+1.考點:一次函數(shù)點評:本題要注意利用一次函數(shù)的特點,求出未知數(shù)的值從而求得其解析式,求直線平移后的解析式時要注意平移時k的值不變.17、【解析】

如圖,作OH⊥CD于H,連結(jié)OC,根據(jù)垂徑定理得HC=HD,由題意得OA=4,即OP=2,在Rt△OPH中,根據(jù)含30°的直角三角形的性質(zhì)計算出OH=OP=1,然后在在Rt△OHC中,利用勾股定理計算得到CH=,即CD=2CH=2.【詳解】解:如圖,作OH⊥CD于H,連結(jié)OC,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH=,∴CD=2CH=2.故答案為2.【點睛】本題主要考查了圓的垂徑定理,勾股定理和含30°角的直角三角形的性質(zhì),解此題的關(guān)鍵在于作輔助線得到直角三角形,再合理利用各知識點進(jìn)行計算即可三、解答題(共7小題,滿分69分)18、(1)m>;(2)x1=0,x2=1.【解析】

解答本題的關(guān)鍵是是掌握好一元二次方程的根的判別式.(1)求出△=5+4m>0即可求出m的取值范圍;(2)因為m=﹣1為符合條件的最小整數(shù),把m=﹣1代入原方程求解即可.【詳解】解:(1)△=1+4(m+2)=9+4m>0∴.(2)∵為符合條件的最小整數(shù),∴m=﹣2.∴原方程變?yōu)椤鄕1=0,x2=1.考點:1.解一元二次方程;2.根的判別式.19、(1)>;(2)當(dāng)點P位于CD的中點時,∠APB最大,理由見解析;(3)4米.【解析】

(1)過點E作EF⊥AB于點F,由矩形的性質(zhì)和等腰三角形的判定得到:△AEF是等腰直角三角形,易證∠AEB=90°,而∠ACB<90°,由此可以比較∠AEB與∠ACB的大小(2)假設(shè)P為CD的中點,作△APB的外接圓⊙O,則此時CD切⊙O于P,在CD上取任意異于P點的點E,連接AE,與⊙O交于點F,連接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB與∠APB均為⊙O中弧AB所對的角,則∠AFB=∠APB,即可判斷∠APB與∠AEB的大小關(guān)系,即可得點P位于何處時,∠APB最大;(3)過點E作CE∥DF,交AD于點C,作AB的垂直平分線,垂足為點Q,并在垂直平分線上取點O,使OA=CQ,以點O為圓心,OB為半徑作圓,則⊙O切CE于點G,連接OG,并延長交DF于點P,連接OA,再利用勾股定理以及長度關(guān)系即可得解.【詳解】解:(1)∠AEB>∠ACB,理由如下:如圖1,過點E作EF⊥AB于點F,∵在矩形ABCD中,AB=2AD,E為CD中點,∴四邊形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案為:>;(2)當(dāng)點P位于CD的中點時,∠APB最大,理由如下:假設(shè)P為CD的中點,如圖2,作△APB的外接圓⊙O,則此時CD切⊙O于點P,在CD上取任意異于P點的點E,連接AE,與⊙O交于點F,連接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故點P位于CD的中點時,∠APB最大:(3)如圖3,過點E作CE∥DF交AD于點C,作線段AB的垂直平分線,垂足為點Q,并在垂直平分線上取點O,使OA=CQ,以點O為圓心,OA長為半徑作圓,則⊙O切CE于點G,連接OG,并延長交DF于點P,此時點P即為小剛所站的位置,由題意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米,AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小剛與大樓AD之間的距離為4米時看廣告牌效果最好.【點睛】本題考查了矩形的性質(zhì),正方形的判定與性質(zhì),圓周角定理的推論,三角形外角的性質(zhì),線段垂直平分線的性質(zhì),勾股定理等知識,難度較大,熟練掌握各知識點并正確作出輔助圓是解答本題的關(guān)鍵.20、-5【解析】

根據(jù)分式的運算法則以及實數(shù)的運算法則即可求出答案.【詳解】當(dāng)x=sin30°+2﹣1+時,∴x=++2=3,原式=÷==﹣5.【點睛】本題考查分式的運算法則,解題的關(guān)鍵是熟練運用分式的運算法則,本題屬于基礎(chǔ)題型.21、(1)n=1,k=1.(2)當(dāng)2≤x≤1時,1≤y≤2.【解析】【分析】(1)利用一次函數(shù)圖象上點的坐標(biāo)特征可求出n值,進(jìn)而可得出點B的坐標(biāo),再利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出k值;(2)由k=1>0結(jié)合反比例函數(shù)的性質(zhì),即可求出:當(dāng)2≤x≤1時,1≤y≤2.【詳解】(1)當(dāng)x=1時,n=﹣×1+4=1,∴點B的坐標(biāo)為(1,1).∵反比例函數(shù)y=過點B(1,1),∴k=1×1=1;(2)∵k=1>0,∴當(dāng)x>0時,y隨x值增大而減小,∴當(dāng)2≤x≤1時,1≤y≤2.【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題,反比例函數(shù)的性質(zhì),用到了點在函數(shù)圖象上,則點的坐標(biāo)就適合所在函數(shù)圖象的函數(shù)解析式,待定系數(shù)法等知識,熟練掌握相關(guān)知識是解題的關(guān)鍵.22、(1)證明見解析;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形;證明見解析;【解析】分析(1)首先利用平行線的性質(zhì)得到∠FAB=∠CAB,然后利用SAS證得兩三角形全等,得出對應(yīng)角相等即可;(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形,根據(jù)∠CAB=60°,得到∠FAB=∠CAB=∠CAB=60°,從而得到EF=AD=AE,利用鄰邊相等的平行四邊形是菱形進(jìn)行判斷四邊形ADFE是菱形.詳解:(1)證明:∵EF∥AB∴∠FAB=∠EFA,∠CAB=∠E∵AE=AF∴∠EFA=∠E∴∠FAB=∠CAB∵AC=AF,AB=AB∴△ABC≌△ABF∴∠AFB=∠ACB=90°,∴BF是⊙A的切線.(2)當(dāng)∠CAB=60°時,四邊形ADFE為菱形.理由:∵EF∥AB∴∠E=∠CAB=60°∵AE=AF∴△AEF是等邊三角形∴AE=EF,∵AE=AD∴EF=AD∴四邊形ADFE是平行四邊形∵AE=EF∴平行四邊形ADFE為菱形.點睛:本題考查了菱形的判定、全等三角形的判定與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論