![浙江省衢州市常山縣2024屆中考試題猜想數學試卷含解析_第1頁](http://file4.renrendoc.com/view14/M08/29/00/wKhkGWYRIEqAQuGdAAI5OvEPtpI975.jpg)
![浙江省衢州市常山縣2024屆中考試題猜想數學試卷含解析_第2頁](http://file4.renrendoc.com/view14/M08/29/00/wKhkGWYRIEqAQuGdAAI5OvEPtpI9752.jpg)
![浙江省衢州市常山縣2024屆中考試題猜想數學試卷含解析_第3頁](http://file4.renrendoc.com/view14/M08/29/00/wKhkGWYRIEqAQuGdAAI5OvEPtpI9753.jpg)
![浙江省衢州市常山縣2024屆中考試題猜想數學試卷含解析_第4頁](http://file4.renrendoc.com/view14/M08/29/00/wKhkGWYRIEqAQuGdAAI5OvEPtpI9754.jpg)
![浙江省衢州市常山縣2024屆中考試題猜想數學試卷含解析_第5頁](http://file4.renrendoc.com/view14/M08/29/00/wKhkGWYRIEqAQuGdAAI5OvEPtpI9755.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省衢州市常山縣2024屆中考試題猜想數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.今年我市計劃擴大城區(qū)綠地面積,現有一塊長方形綠地,它的短邊長為60m,若將短邊增長到長邊相等(長邊不變),使擴大后的棣地的形狀是正方形,則擴大后的綠地面積比原來增加1600,設擴大后的正方形綠地邊長為xm,下面所列方程正確的是()A.x(x-60)=1600B.x(x+60)=1600C.60(x+60)=1600D.60(x-60)=16002.港珠澳大橋目前是全世界最長的跨海大橋,其主體工程“海中橋隧”全長35578米,數據35578用科學記數法表示為()A.35.578×103 B.3.5578×104C.3.5578×105 D.0.35578×1053.若關于x的不等式組無解,則a的取值范圍是()A.a≤﹣3 B.a<﹣3 C.a>3 D.a≥34.如圖所示的幾何體是一個圓錐,下面有關它的三視圖的結論中,正確的是()A.主視圖是中心對稱圖形B.左視圖是中心對稱圖形C.主視圖既是中心對稱圖形又是軸對稱圖形D.俯視圖既是中心對稱圖形又是軸對稱圖形5.如圖所示,是用直尺和圓規(guī)作一個角等于已知角的示意圖,則說明∠A′O′B′=∠AOB的依據是()A.SAS B.SSS C.AAS D.ASA6.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1257.某公園有A、B、C、D四個入口,每個游客都是隨機從一個入口進入公園,則甲、乙兩位游客恰好從同一個入口進入公園的概率是()A. B. C. D.8.如圖,水平的講臺上放置的圓柱體筆筒和正方體粉筆盒,其左視圖是()A. B.C. D.9.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=110.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+1二、填空題(本大題共6個小題,每小題3分,共18分)11.2018年貴州省公務員、人民警察、基層培養(yǎng)項目和選調生報名人數約40.2萬人,40.2萬人用科學記數法表示為_____人.12.在平面直角坐標系中,點A,B的坐標分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.13.在不透明的口袋中有若干個完全一樣的紅色小球,現放入10個僅顏色不同的白色小球,均勻混合后,有放回的隨機摸取30次,有10次摸到白色小球,據此估計該口袋中原有紅色小球個數為_____.14.一個扇形的弧長是,它的面積是,這個扇形的圓心角度數是_____.15.把多項式a3-2a2+a分解因式的結果是16.分解因式___________三、解答題(共8題,共72分)17.(8分)某品牌牛奶供應商提供A,B,C,D四種不同口味的牛奶供學生飲用.某校為了了解學生對不同口味的牛奶的喜好,對全校訂牛奶的學生進行了隨機調查,并根據調查結果繪制了如下兩幅不完整的統計圖.根據統計圖的信息解決下列問題:本次調查的學生有多少人?補全上面的條形統計圖;扇形統計圖中C對應的中心角度數是;若該校有600名學生訂了該品牌的牛奶,每名學生每天只訂一盒牛奶,要使學生能喝到自己喜歡的牛奶,則該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約多少盒?18.(8分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數為60°,連接PB.求BC的長;求證:PB是⊙O的切線.19.(8分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.20.(8分)閱讀材料:對于線段的垂直平分線我們有如下結論:到線段兩個端點距離相等的點在線段的垂直平分線上.即如圖①,若PA=PB,則點P在線段AB的垂直平分線上請根據閱讀材料,解決下列問題:如圖②,直線CD是等邊△ABC的對稱軸,點D在AB上,點E是線段CD上的一動點(點E不與點C、D重合),連結AE、BE,△ABE經順時針旋轉后與△BCF重合.(I)旋轉中心是點,旋轉了(度);(II)當點E從點D向點C移動時,連結AF,設AF與CD交于點P,在圖②中將圖形補全,并探究∠APC的大小是否保持不變?若不變,請求出∠APC的度數;若改變,請說出變化情況.21.(8分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發(fā),結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.22.(10分)嘉淇在做家庭作業(yè)時,不小心將墨汁弄倒,恰好覆蓋了題目的一部分:計算:(﹣7)0+|1﹣|+()﹣1﹣□+(﹣1)2018,經詢問,王老師告訴題目的正確答案是1.(1)求被覆蓋的這個數是多少?(2)若這個數恰好等于2tan(α﹣15)°,其中α為三角形一內角,求α的值.23.(12分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關于BC所在直線的對稱圖形得到△A'BC,連結AA′交直線BC于點D.若點B是△AA′C的重心,求的值.(3)應用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點A在直線l1上,有一邊的長是BC的倍.將△ABC繞點C按順時針方向旋轉45°得到△A'B'C,A′C所在直線交l1于點D.求CD的值.24.在平面直角坐標系中,一次函數的圖象與反比例函數(k≠0)圖象交于A、B兩點,與y軸交于點C,與x軸交于點D,其中A點坐標為(﹣2,3).求一次函數和反比例函數解析式.若將點C沿y軸向下平移4個單位長度至點F,連接AF、BF,求△ABF的面積.根據圖象,直接寫出不等式的解集.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:根據題意可得擴建的部分相當于一個長方形,這個長方形的長和寬分別為x米和(x-60)米,根據長方形的面積計算法則列出方程.考點:一元二次方程的應用.2、B【解析】
科學計數法是a×,且,n為原數的整數位數減一.【詳解】解:35578=3.5578×,故選B.【點睛】本題主要考查的是利用科學計數法表示較大的數,屬于基礎題型.理解科學計數法的表示方法是解題的關鍵.3、A【解析】【分析】利用不等式組取解集的方法,根據不等式組無解求出a的取值范圍即可.【詳解】∵不等式組無解,∴a﹣4≥3a+2,解得:a≤﹣3,故選A.【點睛】本題考查了一元一次不等式組的解集,熟知一元一次不等式組的解集的確定方法“同大取大、同小取小、大小小大中間找、大大小小無處找”是解題的關鍵.4、D【解析】
先得到圓錐的三視圖,再根據中心對稱圖形和軸對稱圖形的定義求解即可.【詳解】解:A、主視圖不是中心對稱圖形,故A錯誤;
B、左視圖不是中心對稱圖形,故B錯誤;
C、主視圖不是中心對稱圖形,是軸對稱圖形,故C錯誤;
D、俯視圖既是中心對稱圖形又是軸對稱圖形,故D正確.
故選:D.【點睛】本題考查簡單幾何體的三視圖,中心對稱圖形和軸對稱圖形,熟練掌握各自的定義是解題關鍵.5、B【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根據SSS可得到三角形全等.【詳解】由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依據SSS可判定△COD≌△C'O'D',故選:B.【點睛】本題主要考查了全等三角形的判定,關鍵是掌握全等三角形的判定定理.6、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.7、B【解析】
畫樹狀圖列出所有等可能結果,從中確定出甲、乙兩位游客恰好從同一個入口進入公園的結果數,再利用概率公式計算可得.【詳解】畫樹狀圖如下:由樹狀圖知共有16種等可能結果,其中甲、乙兩位游客恰好從同一個入口進入公園的結果有4種,所以甲、乙兩位游客恰好從同一個入口進入公園的概率為=,故選B.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.8、C【解析】
根據左視圖是從物體的左面看得到的視圖解答即可.【詳解】解:水平的講臺上放置的圓柱形筆筒和正方體形粉筆盒,其左視圖是一個含虛線的長方形,故選C.【點睛】本題考查的是幾何體的三視圖,左視圖是從物體的左面看得到的視圖.9、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發(fā)現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗10、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、4.02×1.【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.12、﹣4≤m≤﹣1【解析】
先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當點B在點A的右側,則m≤﹣4≤3m﹣1,當點B在點A的左側,則3m﹣1≤﹣4≤m,然后分別解關于m的不等式組即可.【詳解】解:當y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當點B在點A的右側,則m≤﹣4≤3m﹣1,無解;當點B在點A的左側,則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點睛】本題考查了一次函數圖象上點的坐標特征,根據直線y=﹣2x﹣1與線段AB有公共點找出關于m的一元一次不等式組是解題的關鍵.13、20【解析】
利用頻率估計概率,設原來紅球個數為x個,根據摸取30次,有10次摸到白色小球結合概率公式可得關于x的方程,解方程即可得.【詳解】設原來紅球個數為x個,則有=,解得,x=20,經檢驗x=20是原方程的根.故答案為20.【點睛】本題考查了利用頻率估計概率和概率公式的應用,熟練掌握概率的求解方法以及分式方程的求解方法是解題的關鍵.14、120°【解析】
設扇形的半徑為r,圓心角為n°.利用扇形面積公式求出r,再利用弧長公式求出圓心角即可.【詳解】設扇形的半徑為r,圓心角為n°.由題意:,∴r=4,∴∴n=120,故答案為120°【點睛】本題考查扇形的面積的計算,弧長公式等知識,解題的關鍵是掌握基本知識.15、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.16、【解析】
原式提取公因式,再利用完全平方公式分解即可.【詳解】原式=2x(y2+2y+1)=2x(y+1)2,故答案為2x(y+1)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關鍵.三、解答題(共8題,共72分)17、(1)150人;(2)補圖見解析;(3)144°;(4)300盒.【解析】
(1)根據喜好A口味的牛奶的學生人數和所占百分比,即可求出本次調查的學生數.(2)用調查總人數減去A、B、D三種喜好不同口味牛奶的人數,求出喜好C口味牛奶的人數,補全統計圖.再用360°乘以喜好C口味的牛奶人數所占百分比求出對應中心角度數.(3)用總人數乘以A、B口味牛奶喜歡人數所占的百分比得出答案.【詳解】解:(1)本次調查的學生有30÷20%=150人;(2)C類別人數為150﹣(30+45+15)=60人,補全條形圖如下:(3)扇形統計圖中C對應的中心角度數是360°×=144°故答案為144°(4)600×()=300(人),答:該牛奶供應商送往該校的牛奶中,A,B口味的牛奶共約300盒.【點睛】本題考查了條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得出必要的信息是解題的關鍵.18、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點:切線的判定.19、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據切線的判定定理得到結論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數.【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又∵OC=OC,OA=OE,∴△OCA≌△OCE(SAS),∴∠CAO=∠CEO=90°,又∵AB為⊙O的直徑,∴AC為⊙O的切線;(2)∵四邊形FOBE是菱形,∴OF=OB=BF=EF,∴OE=OB=BE,∴△OBE為等邊三角形,∴∠BOE=60°,而OE⊥CD,∴∠D=30°.【點睛】本題考查了切線的判定與性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常?!坝龅角悬c連圓心得半徑”.也考查了圓周角定理.20、B60【解析】分析:(1)根據旋轉的性質可得出結論;(2)根據旋轉的性質可得BF=CF,則點F在線段BC的垂直平分線上,又由AC=AB,可得點A在線段BC的垂直平分線上,由AF垂直平分BC,即∠CQP=90,進而得出∠APC的度數.詳解:(1)B,60;(2)補全圖形如圖所示;的大小保持不變,理由如下:設與交于點∵直線是等邊的對稱軸∴,∵經順時針旋轉后與重合∴,∴∴點在線段的垂直平分線上∵∴點在線段的垂直平分線上∴垂直平分,即∴點睛:本題考查了旋轉的性質,解題的關鍵是熟記旋轉的性質及垂直平分線的性質,注意只證明一點是不能說明這條直線是垂直平分線的.21、15【解析】試題分析:設騎車學生的速度為,利用時間關系列方程解應用題,一定要檢驗.試題解析:解:設騎車學生的速度為,由題意得,解得.經檢驗是原方程的解.答:騎車學生的速度為15.22、(1)2;(2)α=75°.【解析】
(1)直接利用絕對值的性質以及負指數冪的性質以及零指數冪的性質分別化簡得出答案;(2)直接利用特殊角的三角函數值計算得出答案.【詳解】解:(1)原式=1+﹣1+﹣□+1=1,∴□=1+﹣1++1﹣1=2;(2)∵α為三角形一內角,∴0°<α<180°,∴﹣15°<(α﹣15)°<165°,∵2tan(α﹣15)°=,∴α﹣15°=60°,∴α=75°.【點睛】此題主要考查了實數運算,正確化簡各數是解題關鍵.23、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】
(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據30°所對的直角邊等于斜邊的一半可得:根據“等高底”三角形的概念即可判斷.(1)點B是的重心,得到設則根據勾股定理可得即可求出它們的比值.(3)分兩種情況進行討論:①當時和②當時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電子油門踏板項目申請報告模范
- 2025年離合器助力器項目申請報告
- 2025年公共停車設施車位使用協議規(guī)范
- 2025年停車場安全規(guī)定協議
- 2025年技術策劃援助框架協議
- 2025年企業(yè)風險管理合同模板
- 2025年光伏產品銷售合同范例
- 2025年產品策劃與委托生產合同書
- 住宅臨時借用協議
- 2025年企業(yè)財務管理規(guī)劃合作協議書范本
- 《固體食品罐用冷軋電鍍錫鋼板及鋼帶》編制說明
- 人教版數學三年級下冊 期末測試卷帶答案(能力提升)
- 《人工智能發(fā)展史》課件
- 臨床用血管理培訓
- 介入手術室護理風險
- 春季安全行車教育培訓
- 2024年6月第3套英語六級真題
- 2024年江蘇省公務員錄用考試《行測》題(A類)
- 2024年律師事務所代收款協議書模板
- 中國PHM系統行業(yè)政策、市場規(guī)模及投資前景研究報告(智研咨詢發(fā)布)
- 2024年10月時政100題(附答案)
評論
0/150
提交評論