陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷含解析_第1頁
陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷含解析_第2頁
陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷含解析_第3頁
陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷含解析_第4頁
陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省渭南市臨渭區(qū)重點名校2024屆中考數學考前最后一卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.若一個函數的圖象是經過原點的直線,并且這條直線過點(-3,2a)和點(8a,-3),則a的值為()A.916 B.34 C.±2.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD3.數據”1,2,1,3,1”的眾數是()A.1B.1.5C.1.6D.34.甲、乙、丙三家超市為了促銷同一種定價為m元的商品,甲超市連續(xù)兩次降價20%;乙超市一次性降價40%;丙超市第一次降價30%,第二次降價10%,此時顧客要購買這種商品,最劃算的超市是()A.甲 B.乙 C.丙 D.都一樣5.6的相反數為A.-6 B.6 C. D.6.如圖,點D在△ABC的邊AC上,要判斷△ADB與△ABC相似,添加一個條件,不正確的是()A.∠ABD=∠C B.∠ADB=∠ABC C. D.7.如圖,將矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α(0°<α<90°).若∠1=112°,則∠α的大小是()A.68° B.20° C.28° D.22°8.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形9.兩個相同的瓶子裝滿酒精溶液,在一個瓶子中酒精與水的容積之比是1:p,而在另一個瓶子中是1:q,若把兩瓶溶液混合在一起,混合液中的酒精與水的容積之比是()A. B. C. D.10.在數軸上標注了四段范圍,如圖,則表示的點落在()A.段① B.段② C.段③ D.段④二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在等腰直角三角形ABC中,∠C=90°,點D為AB的中點,已知扇形EAD和扇形FBD的圓心分別為點A、點B,且AB=4,則圖中陰影部分的面積為_____(結果保留π).12.兩個等腰直角三角板如圖放置,點F為BC的中點,AG=1,BG=3,則CH的長為__________.13.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內分別填上適當的數,使得將這個表面展開圖折成正方體后,相對面上的兩個數互為相反數,則填在B內的數為______.14.計算:(﹣2a3)2=_____.15.如圖,已知正方形邊長為4,以A為圓心,AB為半徑作弧BD,M是BC的中點,過點M作EM⊥BC交弧BD于點E,則弧BE的長為_____.16.如圖,PA,PB分別為的切線,切點分別為A、B,,則______.17.如圖,在圓O中,AB為直徑,AD為弦,過點B的切線與AD的延長線交于點C,AD=DC,則∠C=________度.三、解答題(共7小題,滿分69分)18.(10分)“校園詩歌大賽”結束后,張老師和李老師將所有參賽選手的比賽成績(得分均為整數)進行整理,并分別繪制成扇形統(tǒng)計圖和頻數直方圖部分信息如下:本次比賽參賽選手共有人,扇形統(tǒng)計圖中“69.5~79.5”這一組人數占總參賽人數的百分比為;賽前規(guī)定,成績由高到低前60%的參賽選手獲獎.某參賽選手的比賽成績?yōu)?8分,試判斷他能否獲獎,并說明理由;成績前四名是2名男生和2名女生,若從他們中任選2人作為獲獎代表發(fā)言,試求恰好選中1男1女的概率.19.(5分)如圖,AB是⊙O的直徑,BC⊥AB,垂足為點B,連接CO并延長交⊙O于點D、E,連接AD并延長交BC于點F.(1)試判斷∠CBD與∠CEB是否相等,并證明你的結論;(2)求證:(3)若BC=AB,求tan∠CDF的值.20.(8分)如圖,拋物線y=﹣x2+bx+c與x軸交于點A和點B(3,0),與y軸交于點C(0,3),點D是拋物線的頂點,過點D作x軸的垂線,垂足為E,連接DB.(1)求此拋物線的解析式及頂點D的坐標;(2)點M是拋物線上的動點,設點M的橫坐標為m.①當∠MBA=∠BDE時,求點M的坐標;②過點M作MN∥x軸,與拋物線交于點N,P為x軸上一點,連接PM,PN,將△PMN沿著MN翻折,得△QMN,若四邊形MPNQ恰好為正方形,直接寫出m的值.21.(10分)閱讀與應用:閱讀1:a、b為實數,且a>0,b>0,因為,所以,從而(當a=b時取等號).閱讀2:函數(常數m>0,x>0),由閱讀1結論可知:,所以當即時,函數的最小值為.閱讀理解上述內容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當x=__________時,周長的最小值為__________.問題2:已知函數y1=x+1(x>-1)與函數y2=x2+2x+17(x>-1),當x=__________時,的最小值為__________.問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數的平方成正比,比例系數為0.1.當學校學生人數為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數)22.(10分)為提高城市清雪能力,某區(qū)增加了機械清雪設備,現(xiàn)在平均每天比原來多清雪300立方米,現(xiàn)在清雪4000立方米所需時間與原來清雪3000立方米所需時間相同,求現(xiàn)在平均每天清雪量.23.(12分)如圖,四邊形ABCD,AD∥BC,DC⊥BC于C點,AE⊥BD于E,且DB=DA.求證:AE=CD.24.(14分)已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

根據一次函數的圖象過原點得出一次函數式正比例函數,設一次函數的解析式為y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②【詳解】解:設一次函數的解析式為:y=kx,把點(?3,2a)與點(8a,?3)代入得出方程組2a=-3k①-3=8ak②由①得:k=-2把③代入②得:-3=8a×-解得:a=±3故選:D.【點睛】本題考查了用待定系數法求一次函數的解析式,主要考查學生運用性質進行計算的能力.2、B【解析】

由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,

∴AD//BC,AD=BC,

A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

B、∵BE=DF,

四邊形BFDE是等腰梯形,

本選項不一定能判定BE//DF;

C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF;

D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項能判定BE//DF.

故選B.【點睛】本題考查了平行四邊形的判定與性質,注意根據題意證得四邊形BFDE是平行四邊形是關鍵.3、A【解析】

眾數指一組數據中出現(xiàn)次數最多的數據,根據眾數的定義就可以求解.【詳解】在這一組數據中1是出現(xiàn)次數最多的,故眾數是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數的意義.眾數是一組數據中出現(xiàn)次數最多的數據,注意眾數可以不止一個.4、B【解析】

根據各超市降價的百分比分別計算出此商品降價后的價格,再進行比較即可得出結論.【詳解】解:降價后三家超市的售價是:甲為(1-20%)2m=0.64m,乙為(1-40%)m=0.6m,丙為(1-30%)(1-10%)m=0.63m,∵0.6m<0.63m<0.64m,∴此時顧客要購買這種商品最劃算應到的超市是乙.故選:B.【點睛】此題考查了列代數式,解題的關鍵是根據題目中的數量關系列出代數式,并對代數式比較大?。?、A【解析】

根據相反數的定義進行求解.【詳解】1的相反數為:﹣1.故選A.【點睛】本題主要考查相反數的定義,熟練掌握相反數的定義是解答的關鍵,絕對值相等,符號相反的兩個數互為相反數.6、C【解析】

由∠A是公共角,利用有兩角對應相等的三角形相似,即可得A與B正確;又由兩組對應邊的比相等且夾角對應相等的兩個三角形相似,即可得D正確,繼而求得答案,注意排除法在解選擇題中的應用.【詳解】∵∠A是公共角,∴當∠ABD=∠C或∠ADB=∠ABC時,△ADB∽△ABC(有兩角對應相等的三角形相似),故A與B正確,不符合題意要求;當AB:AD=AC:AB時,△ADB∽△ABC(兩組對應邊的比相等且夾角對應相等的兩個三角形相似),故D正確,不符合題意要求;AB:BD=CB:AC時,∠A不是夾角,故不能判定△ADB與△ABC相似,故C錯誤,符合題意要求,故選C.7、D【解析】試題解析:∵四邊形ABCD為矩形,∴∠BAD=∠ABC=∠ADC=90°,∵矩形ABCD繞點A順時針旋轉到矩形AB′C′D′的位置,旋轉角為α,∴∠BAB′=α,∠B′AD′=∠BAD=90°,∠D′=∠D=90°,∵∠2=∠1=112°,而∠ABD=∠D′=90°,∴∠3=180°-∠2=68°,∴∠BAB′=90°-68°=22°,即∠α=22°.故選D.8、D【解析】分析:根據軸對稱圖形與中心對稱圖形的概念結合矩形、平行四邊形、直角梯形、正五邊形的性質求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項錯誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項錯誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項正確.故選D.點睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖形重合.9、C【解析】

混合液中的酒精與水的容積之比為兩瓶中的純酒精與兩瓶中的水之比,分別算出純酒精和水的體積即可得答案.【詳解】設瓶子的容積即酒精與水的和是1,則純酒精之和為:1×+1×=+,水之和為:+,∴混合液中的酒精與水的容積之比為:(+)÷(+)=,故選C.【點睛】本題主要考查分式的混合運算,找到相應的等量關系是解決本題的關鍵.10、C【解析】試題分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.∵3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,所以應在③段上.故選C考點:實數與數軸的關系二、填空題(共7小題,每小題3分,滿分21分)11、4﹣π【解析】

由在等腰直角三角形ABC中,∠C=90°,AB=4,可求得直角邊AC與BC的長,繼而求得△ABC的面積,又由扇形的面積公式求得扇形EAD和扇形FBD的面積,繼而求得答案.【詳解】解:∵在等腰直角三角形ABC中,∠C=90°,AB=4,∴AC=BC=AB?sin45°=AB=2,∴S△ABC=AC?BC=4,∵點D為AB的中點,∴AD=BD=AB=2,∴S扇形EAD=S扇形FBD=×π×22=π,∴S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD=4﹣π.故答案為:4﹣π.【點睛】此題考查了等腰直角三角形的性質以及扇形的面積.注意S陰影=S△ABC﹣S扇形EAD﹣S扇形FBD.12、【解析】

依據∠B=∠C=45°,∠DFE=45°,即可得出∠BGF=∠CFH,進而得到△BFG∽△CHF,依據相似三角形的性質,即可得到=,即=,即可得到CH=.【詳解】解:∵AG=1,BG=3,∴AB=4,∵△ABC是等腰直角三角形,∴BC=4,∠B=∠C=45°,∵F是BC的中點,∴BF=CF=2,∵△DEF是等腰直角三角形,∴∠DFE=45°,∴∠CFH=180°﹣∠BFG﹣45°=135°﹣∠BFG,又∵△BFG中,∠BGF=180°﹣∠B﹣∠BFG=135°﹣∠BFG,∴∠BGF=∠CFH,∴△BFG∽△CHF,∴=,即=,∴CH=,故答案為.【點睛】本題主要考查了相似三角形的判定與性質,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用.13、1【解析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內的數為1.故答案為1.14、4a1.【解析】

根據積的乘方運算法則進行運算即可.【詳解】原式故答案為【點睛】考查積的乘方,掌握運算法則是解題的關鍵.15、【解析】

延長ME交AD于F,由M是BC的中點,MF⊥AD,得到F點為AD的中點,即AF=AD,則∠AEF=30°,得到∠BAE=30°,再利用弧長公式計算出弧BE的長.【詳解】延長ME交AD于F,如圖,∵M是BC的中點,MF⊥AD,∴F點為AD的中點,即AF=AD.又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的長==.故答案為.【點睛】本題考查了弧長公式:l=.也考查了在直角三角形中,一直角邊是斜邊的一半,這條直角邊所對的角為30度.16、50°【解析】

由PA與PB都為圓O的切線,利用切線長定理得到,再利用等邊對等角得到一對角相等,由頂角的度數求出底角的度數,再利用弦切角等于夾弧所對的圓周角,可得出,由的度數即可求出的度數.【詳解】解:,PB分別為的切線,

,,

又,

則.

故答案為:【點睛】此題考查了切線長定理,切線的性質,以及等腰三角形的性質,熟練掌握定理及性質是解本題的關鍵.17、1【解析】

利用圓周角定理得到∠ADB=90°,再根據切線的性質得∠ABC=90°,然后根據等腰三角形的判定方法得到△ABC為等腰直角三角形,從而得到∠C的度數.【詳解】解:∵AB為直徑,∴∠ADB=90°,∵BC為切線,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC為等腰直角三角形,∴∠C=1°.故答案為1.【點睛】本題考查了切線的性質:圓的切線垂直于經過切點的半徑.也考查了等腰直角三角形的判定與性質.三、解答題(共7小題,滿分69分)18、(1)50,30%;(2)不能,理由見解析;(3)P=【解析】【分析】(1)由直方圖可知59.5~69.5分數段有5人,由扇形統(tǒng)計圖可知這一分數段人占10%,據此可得選手總數,然后求出89.5~99.5這一分數段所占的百分比,用1減去其他分數段的百分比即可得到分數段69.5~79.5所占的百分比;(2)觀察可知79.5~99.5這一分數段的人數占了60%,據此即可判斷出該選手是否獲獎;(3)畫樹狀圖得到所有可能的情況,再找出符合條件的情況后,用概率公式進行求解即可.【詳解】(1)本次比賽選手共有(2+3)÷10%=50(人),“89.5~99.5”這一組人數占百分比為:(8+4)÷50×100%=24%,所以“69.5~79.5”這一組人數占總人數的百分比為:1-10%-24%-36%=30%,故答案為50,30%;(2)不能;由統(tǒng)計圖知,79.5~89.5和89.5~99.5兩組占參賽選手60%,而78<79.5,所以他不能獲獎;(3)由題意得樹狀圖如下由樹狀圖知,共有12種等可能結果,其中恰好選中1男1女的共有8種結果,故P==.【點睛】本題考查了直方圖、扇形圖、概率,結合統(tǒng)計圖找到必要信息進行解題是關鍵.19、(1)∠CBD與∠CEB相等,證明見解析;(2)證明見解析;(3)tan∠CDF=.【解析】試題分析:(1)由AB是⊙O的直徑,BC切⊙O于點B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,從而可得∠A=∠CBD,結合∠A=∠CEB即可得到∠CBD=∠CEB;(2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,從而可得△EBC∽△BDC,再由相似三角形的性質即可得到結論;(3)設AB=2x,結合BC=AB,AB是直徑,可得BC=3x,OB=OD=x,再結合∠ABC=90°,可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,從而可得△DCF∽△BCD,由此可得:==,這樣即可得到tan∠CDF=tan∠DBF==.試題解析:(1)∠CBD與∠CEB相等,理由如下:∵BC切⊙O于點B,∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,(2)∵∠C=∠C,∠CEB=∠CBD,∴∠EBC=∠BDC,∴△EBC∽△BDC,∴;(3)設AB=2x,∵BC=AB,AB是直徑,∴BC=3x,OB=OD=x,∵∠ABC=90°,∴OC=x,∴CD=(-1)x,∵AO=DO,∴∠CDF=∠A=∠DBF,∴△DCF∽△BCD,∴==,∵tan∠DBF==,∴tan∠CDF=.點睛:解答本題第3問的要點是:(1)通過證∠CDF=∠A=∠DBF,把求tan∠CDF轉化為求tan∠DBF=;(2)通過證△DCF∽△BCD,得到.20、(1)(1,4)(2)①點M坐標(﹣,)或(﹣,﹣);②m的值為或【解析】

(1)利用待定系數法即可解決問題;(2)①根據tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,構建方程即可解決問題;②因為點M、N關于拋物線的對稱軸對稱,四邊形MPNQ是正方形,推出點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解決問題.【詳解】解:(1)把點B(3,0),C(0,3)代入y=﹣x2+bx+c,得到,解得,∴拋物線的解析式為y=﹣x2+2x+3,∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,∴頂點D坐標(1,4);(2)①作MG⊥x軸于G,連接BM.則∠MGB=90°,設M(m,﹣m2+2m+3),∴MG=|﹣m2+2m+3|,BG=3﹣m,∴tan∠MBA=,∵DE⊥x軸,D(1,4),∴∠DEB=90°,DE=4,OE=1,∵B(3,0),∴BE=2,∴tan∠BDE==,∵∠MBA=∠BDE,∴=,當點M在x軸上方時,=,解得m=﹣或3(舍棄),∴M(﹣,),當點M在x軸下方時,=,解得m=﹣或m=3(舍棄),∴點M(﹣,﹣),綜上所述,滿足條件的點M坐標(﹣,)或(﹣,﹣);②如圖中,∵MN∥x軸,∴點M、N關于拋物線的對稱軸對稱,∵四邊形MPNQ是正方形,∴點P是拋物線的對稱軸與x軸的交點,即OP=1,易證GM=GP,即|﹣m2+2m+3|=|1﹣m|,當﹣m2+2m+3=1﹣m時,解得m=,當﹣m2+2m+3=m﹣1時,解得m=,∴滿足條件的m的值為或.【點睛】本題考查二次函數綜合題、銳角三角函數、正方形的判定和性質等知識,解題的關鍵是學會添加常用輔助線,構造直角三角形解決問題,學會利用參數構建方程解決問題,屬于中考壓軸題.21、問題1:28問題2:38問題3:設學校學生人數為x人,生均投入為y元,依題意得:,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數為800人時,該校每天生均投入最低,最低費用是2元.【解析】試題分析:問題1:當時,周長有最小值,求x的值和周長最小值;問題2:變形,由當x+1=時,的最小值,求出x值和的最小值;問題3:設學校學生人數為x人,生均投入為y元,根據生均投入=支出總費用÷學生人數,列出關系式,根據前兩題解法,從而求解.試題解析:問題1:∵當(x>0)時,周長有最小值,∴x=2,∴當x=2時,有最小值為=3.即當x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數y2=x2+2x+17(x>-1),∴,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論