浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第1頁(yè)
浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第2頁(yè)
浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第3頁(yè)
浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第4頁(yè)
浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

浙江省紹興市城東東湖2024年十校聯(lián)考最后數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.關(guān)于x的一元二次方程x2﹣2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)m的取值范圍是()A.m<3 B.m>3 C.m≤3 D.m≥32.下列各數(shù)中是有理數(shù)的是()A.π B.0 C. D.3.從1、2、3、4、5、6這六個(gè)數(shù)中隨機(jī)取出一個(gè)數(shù),取出的數(shù)是3的倍數(shù)的概率是()A. B. C. D.4.將一副三角板按如圖方式擺放,∠1與∠2不一定互補(bǔ)的是()A. B. C. D.5.下列計(jì)算正確的是()A.x2+x3=x5 B.x2?x3=x5 C.(﹣x2)3=x8 D.x6÷x2=x36.如圖,四邊形ABCD內(nèi)接于⊙O,若四邊形ABCO是平行四邊形,則∠ADC的大小為()A. B. C. D.7.利用運(yùn)算律簡(jiǎn)便計(jì)算52×(–999)+49×(–999)+999正確的是A.–999×(52+49)=–999×101=–100899B.–999×(52+49–1)=–999×100=–99900C.–999×(52+49+1)=–999×102=–101898D.–999×(52+49–99)=–999×2=–19988.對(duì)于不等式組,下列說(shuō)法正確的是()A.此不等式組的正整數(shù)解為1,2,3B.此不等式組的解集為C.此不等式組有5個(gè)整數(shù)解D.此不等式組無(wú)解9.已知反比例函數(shù)y=﹣,當(dāng)1<x<3時(shí),y的取值范圍是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣210.如圖,在中,,的垂直平分線交于點(diǎn),垂足為.如果,則的長(zhǎng)為()A.2 B.3 C.4 D.6二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.8的算術(shù)平方根是_____.12.如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿足∠BPC=90°,則a的最大值是______.13.如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=_____14.計(jì)算:(π﹣3)0+(﹣)﹣1=_____.15.如圖所示,把一張長(zhǎng)方形紙片沿折疊后,點(diǎn)分別落在點(diǎn)的位置.若,則等于________.16.有三個(gè)大小一樣的正六邊形,可按下列方式進(jìn)行拼接:方式1:如圖1;方式2:如圖2;若有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)是_______.有個(gè)邊長(zhǎng)均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長(zhǎng)為18,則的最大值為__________.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,AB=AC,點(diǎn)P、D分別是BC、AC邊上的點(diǎn),且∠APD=∠B,求證:AC?CD=CP?BP;若AB=10,BC=12,當(dāng)PD∥AB時(shí),求BP的長(zhǎng).18.(8分)已知甲、乙兩地相距90km,A,B兩人沿同一公路從甲地出發(fā)到乙地,A騎摩托車,B騎電動(dòng)車,圖中DE,OC分別表示A,B離開甲地的路程s(km)與時(shí)間t(h)的函數(shù)關(guān)系的圖象,根據(jù)圖象解答下列問(wèn)題:(1)請(qǐng)用t分別表示A、B的路程sA、sB;(2)在A出發(fā)后幾小時(shí),兩人相距15km?19.(8分)某校在一次大課間活動(dòng)中,采用了四鐘活動(dòng)形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動(dòng),小杰對(duì)同學(xué)們選用的活動(dòng)形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.請(qǐng)結(jié)合統(tǒng)計(jì)圖,回答下列問(wèn)題:(1)這次調(diào)查中,一共調(diào)查了多少名學(xué)生?(2)求出扇形統(tǒng)計(jì)圖中“B:跳繩”所對(duì)扇形的圓心角的度數(shù),并補(bǔ)全條形圖;(3)若該校有2000名學(xué)生,請(qǐng)估計(jì)選擇“A:跑步”的學(xué)生約有多少人?20.(8分)在正方形ABCD中,動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng).(1)如圖1,當(dāng)點(diǎn)E在邊DC上自D向C移動(dòng),同時(shí)點(diǎn)F在邊CB上自C向B移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,請(qǐng)你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說(shuō)明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長(zhǎng)線上移動(dòng)時(shí),連接AE,DF,(1)中的結(jié)論還成立嗎?(請(qǐng)你直接回答“是”或“否”,不需證明);連接AC,請(qǐng)你直接寫出△ACE為等腰三角形時(shí)CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動(dòng)時(shí),連接AE和DF交于點(diǎn)P,由于點(diǎn)E,F(xiàn)的移動(dòng),使得點(diǎn)P也隨之運(yùn)動(dòng),請(qǐng)你畫出點(diǎn)P運(yùn)動(dòng)路徑的草圖.若AD=2,試求出線段CP的最大值.21.(8分)如圖,已知,.求證.22.(10分)(1)計(jì)算:(﹣2)2﹣+(+1)2﹣4cos60°;(2)化簡(jiǎn):÷(1﹣)23.(12分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過(guò)點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,CD⊥x軸于點(diǎn)D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過(guò)點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F(xiàn),當(dāng)時(shí),求點(diǎn)F的坐標(biāo).24.校車安全是近幾年社會(huì)關(guān)注的重大問(wèn)題,安全隱患主要是超速和超載,某中學(xué)數(shù)學(xué)活動(dòng)小組設(shè)計(jì)了如下檢測(cè)公路上行駛的汽車速度的實(shí)驗(yàn):先在公路旁邊選取一點(diǎn)C,再在筆直的車道l上確定點(diǎn)D,使CD與l垂直,測(cè)得CD的長(zhǎng)等于24米,在l上點(diǎn)D的同側(cè)取點(diǎn)A、B,使∠CAD=30°,∠CBD=60°.求AB的長(zhǎng)(結(jié)果保留根號(hào));已知本路段對(duì)校車限速為45千米/小時(shí),若測(cè)得某輛校車從A到B用時(shí)1.5秒,這輛校車是否超速?說(shuō)明理由.(參考數(shù)據(jù):≈1.7,≈1.4)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】分析:根據(jù)關(guān)于x的一元二次方程x2-2x+m=0有兩個(gè)不相等的實(shí)數(shù)根可得△=(-2)2-4m>0,求出m的取值范圍即可.詳解:∵關(guān)于x的一元二次方程x2-2x+m=0有兩個(gè)不相等的實(shí)數(shù)根,∴△=(-2)2-4m>0,∴m<3,故選A.點(diǎn)睛:本題考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c為常數(shù))的根的判別式△=b2-4ac.當(dāng)△>0時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0時(shí),方程沒(méi)有實(shí)數(shù)根.2、B【解析】【分析】根據(jù)有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù),結(jié)合無(wú)理數(shù)的定義進(jìn)行判斷即可得答案.【詳解】A、π是無(wú)限不循環(huán)小數(shù),屬于無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;B、0是有理數(shù),故本選項(xiàng)正確;C、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤;D、是無(wú)理數(shù),故本選項(xiàng)錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了實(shí)數(shù)的分類,熟知有理數(shù)是有限小數(shù)或無(wú)限循環(huán)小數(shù)是解題的關(guān)鍵.3、B【解析】考點(diǎn):概率公式.專題:計(jì)算題.分析:根據(jù)概率的求法,找準(zhǔn)兩點(diǎn):①全部情況的總數(shù);②符合條件的情況數(shù)目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個(gè)數(shù)中隨機(jī)取出一個(gè)數(shù),共有6種情況,取出的數(shù)是3的倍數(shù)的可能有3和6兩種,故概率為2/6="1/"3.故選B.點(diǎn)評(píng):此題考查概率的求法:如果一個(gè)事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)="m"/n.4、D【解析】A選項(xiàng):∠1+∠2=360°-90°×2=180°;B選項(xiàng):∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C選項(xiàng):∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D選項(xiàng):∠1和∠2不一定互補(bǔ).故選D.點(diǎn)睛:本題主要掌握平行線的性質(zhì)與判定定理,關(guān)鍵在于通過(guò)角度之間的轉(zhuǎn)化得出∠1和∠2的互補(bǔ)關(guān)系.5、B【解析】分析:直接利用合并同類項(xiàng)法則以及同底數(shù)冪的乘除運(yùn)算法則和積的乘方運(yùn)算法則分別計(jì)算得出答案.詳解:A、不是同類項(xiàng),無(wú)法計(jì)算,故此選項(xiàng)錯(cuò)誤;B、正確;C、故此選項(xiàng)錯(cuò)誤;D、故此選項(xiàng)錯(cuò)誤;故選:B.點(diǎn)睛:此題主要考查了合并同類項(xiàng)以及同底數(shù)冪的乘除運(yùn)算和積的乘方運(yùn)算,正確掌握運(yùn)算法則是解題關(guān)鍵.6、C【解析】

根據(jù)平行四邊形的性質(zhì)和圓周角定理可得出答案.【詳解】根據(jù)平行四邊形的性質(zhì)可知∠B=∠AOC,根據(jù)圓內(nèi)接四邊形的對(duì)角互補(bǔ)可知∠B+∠D=180°,根據(jù)圓周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故選C【點(diǎn)睛】該題主要考查了圓周角定理及其應(yīng)用問(wèn)題;應(yīng)牢固掌握該定理并能靈活運(yùn)用.7、B【解析】

根據(jù)乘法分配律和有理數(shù)的混合運(yùn)算法則可以解答本題.【詳解】原式=-999×(52+49-1)=-999×100=-1.故選B.【點(diǎn)睛】本題考查了有理數(shù)的混合運(yùn)算,解答本題的關(guān)鍵是明確有理數(shù)混合運(yùn)算的計(jì)算方法.8、A【解析】解:,解①得x≤,解②得x>﹣1,所以不等式組的解集為﹣1<x≤,所以不等式組的整數(shù)解為1,2,1.故選A.點(diǎn)睛:本題考查了一元一次不等式組的整數(shù)解:利用數(shù)軸確定不等式組的解(整數(shù)解).解決此類問(wèn)題的關(guān)鍵在于正確解得不等式組或不等式的解集,然后再根據(jù)題目中對(duì)于解集的限制得到下一步所需要的條件,再根據(jù)得到的條件進(jìn)而求得不等式組的整數(shù)解.9、D【解析】

根據(jù)反比例函數(shù)的性質(zhì)可以求得y的取值范圍,從而可以解答本題.【詳解】解:∵反比例函數(shù)y=﹣,∴在每個(gè)象限內(nèi),y隨x的增大而增大,∴當(dāng)1<x<3時(shí),y的取值范圍是﹣6<y<﹣1.故選D.【點(diǎn)睛】本題考查了反比例函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,求出相應(yīng)的y的取值范圍,利用反比例函數(shù)的性質(zhì)解答.10、C【解析】

先利用垂直平分線的性質(zhì)證明BE=CE=8,再在Rt△BED中利用30°角的性質(zhì)即可求解ED.【詳解】解:因?yàn)榇怪逼椒郑?,在中,,則;故選:C.【點(diǎn)睛】本題主要考查了線段垂直平分線的性質(zhì)、30°直角三角形的性質(zhì),線段的垂直平分線上的點(diǎn)到線段的兩個(gè)端點(diǎn)的距離相等.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、2.【解析】試題分析:本題主要考查的是算術(shù)平方根的定義,掌握算術(shù)平方根的定義是解題的關(guān)鍵.依據(jù)算術(shù)平方根的定義回答即可.由算術(shù)平方根的定義可知:8的算術(shù)平方根是,∵=2,∴8的算術(shù)平方根是2.故答案為2.考點(diǎn):算術(shù)平方根.12、1【解析】

首先證明AB=AC=a,根據(jù)條件可知PA=AB=AC=a,求出⊙D上到點(diǎn)A的最大距離即可解決問(wèn)題.【詳解】∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0),∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a,∴AB=AC,∵∠BPC=90°,∴PA=AB=AC=a,如圖延長(zhǎng)AD交⊙D于P′,此時(shí)AP′最大,∵A(1,0),D(4,4),∴AD=5,∴AP′=5+1=1,∴a的最大值為1.故答案為1.【點(diǎn)睛】圓外一點(diǎn)到圓上一點(diǎn)的距離最大值為點(diǎn)到圓心的距離加半徑,最小值為點(diǎn)到圓心的距離減去半徑.13、.【解析】

解:令A(yù)E=4x,BE=3x,∴AB=7x.∵四邊形ABCD為平行四邊形,∴CD=AB=7x,CD∥AB,∴△BEF∽△DCF.∴,∴DF=【點(diǎn)睛】本題考查平行四邊形的性質(zhì)及相似三角形的判定與性質(zhì),掌握定理正確推理論證是本題的解題關(guān)鍵.14、-1【解析】

先計(jì)算0指數(shù)冪和負(fù)指數(shù)冪,再相減.【詳解】(π﹣3)0+(﹣)﹣1,=1﹣3,=﹣1,故答案是:﹣1.【點(diǎn)睛】考查了0指數(shù)冪和負(fù)指數(shù)冪,解題關(guān)鍵是運(yùn)用任意數(shù)的0次冪為1,a-1=.15、50°【解析】

先根據(jù)平行線的性質(zhì)得出∠DEF的度數(shù),再根據(jù)翻折變換的性質(zhì)得出∠D′EF的度數(shù),根據(jù)平角的定義即可得出結(jié)論.【詳解】∵AD∥BC,∠EFB=65°,

∴∠DEF=65°,

又∵∠DEF=∠D′EF,

∴∠D′EF=65°,

∴∠AED′=50°.【點(diǎn)睛】本題考查翻折變換(折疊問(wèn)題)和平行線的性質(zhì),解題的關(guān)鍵是掌握翻折變換(折疊問(wèn)題)和平行線的性質(zhì).16、181【解析】

有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,利用4n+2的規(guī)律計(jì)算;把六個(gè)正六邊形圍著一個(gè)正六邊按照方式2進(jìn)行拼接可使周長(zhǎng)為8,六邊形的個(gè)數(shù)最多.【詳解】解:有四個(gè)邊長(zhǎng)均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長(zhǎng)為4×4+2=18;按下圖拼接,圖案的外輪廓的周長(zhǎng)為18,此時(shí)正六邊形的個(gè)數(shù)最多,即n的最大值為1.故答案為:18;1.【點(diǎn)睛】本題考查了正多邊形和圓,以及圖形的變化類規(guī)律總結(jié)問(wèn)題,根據(jù)題意,得出規(guī)律是解決此題的關(guān)鍵.三、解答題(共8題,共72分)17、(1)證明見(jiàn)解析;(2).【解析】(2)易證∠APD=∠B=∠C,從而可證到△ABP∽△PCD,即可得到,即AB?CD=CP?BP,由AB=AC即可得到AC?CD=CP?BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,從而可證到△BAP∽△BCA,然后運(yùn)用相似三角形的性質(zhì)即可求出BP的長(zhǎng).解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴,∴AB?CD=CP?BP.∵AB=AC,∴AC?CD=CP?BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴.∵AB=10,BC=12,∴,∴BP=.“點(diǎn)睛”本題主要考查了相似三角形的判定與性質(zhì)、等腰三角形的性質(zhì)、平行線的性質(zhì)、三角形外角的性質(zhì)等知識(shí),把證明AC?CD=CP?BP轉(zhuǎn)化為證明AB?CD=CP?BP是解決第(1)小題的關(guān)鍵,證到∠BAP=∠C進(jìn)而得到△BAP∽△BCA是解決第(2)小題的關(guān)鍵.18、(1)sA=45t﹣45,sB=20t;(2)在A出發(fā)后小時(shí)或小時(shí),兩人相距15km.【解析】

(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以分別求得s與t的函數(shù)關(guān)系式;(2)根據(jù)(1)中的函數(shù)解析式可以解答本題.【詳解】解:(1)設(shè)sA與t的函數(shù)關(guān)系式為sA=kt+b,,得,即sA與t的函數(shù)關(guān)系式為sA=45t﹣45,設(shè)sB與t的函數(shù)關(guān)系式為sB=at,60=3a,得a=20,即sB與t的函數(shù)關(guān)系式為sB=20t;(2)|45t﹣45﹣20t|=15,解得,t1=,t2=,,,即在A出發(fā)后小時(shí)或小時(shí),兩人相距15km.【點(diǎn)睛】本題主要考查一次函數(shù)的應(yīng)用,涉及到直線上點(diǎn)的坐標(biāo)與方程,利用待定系數(shù)法求一次函數(shù)的解析式是解題的關(guān)鍵.19、(1)一共調(diào)查了300名學(xué)生;(2)36°,補(bǔ)圖見(jiàn)解析;(3)估計(jì)選擇“A:跑步”的學(xué)生約有800人.【解析】

(1)由跑步的學(xué)生數(shù)除以占的百分比求出調(diào)查學(xué)生總數(shù)即可;(2)求出跳繩學(xué)生占的百分比,乘以360°求出占的圓心角度數(shù),補(bǔ)全條形統(tǒng)計(jì)圖即可;(3)利用跑步占的百分比,乘以2000即可得到結(jié)果.【詳解】(1)根據(jù)題意得:120÷40%=300(名),則一共調(diào)查了300名學(xué)生;(2)根據(jù)題意得:跳繩學(xué)生數(shù)為300﹣(120+60+90)=30(名),則扇形統(tǒng)計(jì)圖中“B:跳繩”所對(duì)扇形的圓心角的度數(shù)為360°×=36°,;(3)根據(jù)題意得:2000×40%=800(人),則估計(jì)選擇“A:跑步”的學(xué)生約有800人.【點(diǎn)睛】此題考查了條形統(tǒng)計(jì)圖,扇形統(tǒng)計(jì)圖,以及用樣本估計(jì)總體,弄清題中的數(shù)據(jù)是解本題的關(guān)鍵.20、(1)AE=DF,AE⊥DF,理由見(jiàn)解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時(shí),設(shè)正方形的邊長(zhǎng)為a,由勾股定理求出AC=AE=a,根據(jù)正方形的性質(zhì)知∠ADC=90°,然后根據(jù)等腰三角形的性質(zhì)得出DE=CD=a即可;(3)由(1)(2)知:點(diǎn)P的路徑是一段以AD為直徑的圓,設(shè)AD的中點(diǎn)為Q,連接QC交弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,再由勾股定理可得QC的長(zhǎng),再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動(dòng)點(diǎn)E,F(xiàn)分別從D,C兩點(diǎn)同時(shí)出發(fā),以相同的速度在直線DC,CB上移動(dòng),∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結(jié)論還成立,有兩種情況:①如圖1,當(dāng)AC=CE時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得,,則;②如圖2,當(dāng)AE=AC時(shí),設(shè)正方形ABCD的邊長(zhǎng)為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90°,∴點(diǎn)P的路徑是以AD為直徑的圓,如圖3,設(shè)AD的中點(diǎn)為Q,連接CQ并延長(zhǎng)交圓弧于點(diǎn)P,此時(shí)CP的長(zhǎng)度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點(diǎn)睛:此題主要考查了正方形的性質(zhì),勾股定理,圓周角定理,全等三角形的性質(zhì)與判定,等腰三角形的性質(zhì),三角形的內(nèi)角和定理,能綜合運(yùn)用性質(zhì)進(jìn)行推擠是解此題的關(guān)鍵,用了分類討論思想,難度偏大.21、見(jiàn)解析【解析】

根據(jù)∠ABD=∠DCA,∠ACB=∠DBC,求證∠ABC=∠DCB,然后利用AAS可證明△ABC≌△DCB,即可證明結(jié)論.【詳解】證明:∵∠ABD=∠DCA,∠DBC=∠ACB

∴∠ABD+∠DBC=∠DCA+∠ACB

即∠ABC=∠DCB

在△ABC和△DCB中

∴△ABC≌△DCB(ASA)

∴AB=DC【點(diǎn)睛】本題主要考查學(xué)生對(duì)全等三角形的判定與性質(zhì)的理解和掌握,證明此題的關(guān)鍵是求證△ABC≌△DCB.難度不大,屬于基礎(chǔ)題.22、(1)5(2)【解析】

(1)根據(jù)實(shí)數(shù)的運(yùn)算法則進(jìn)行計(jì)算,要記住特殊銳角三角函數(shù)值;(2)根據(jù)分式的混合運(yùn)算法則進(jìn)行計(jì)算.【詳解】解:(1)原式=4﹣2+2+2+1﹣4×=7﹣2=5;(2)原式=÷=?=

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論