天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題_第1頁
天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題_第2頁
天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題_第3頁
天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題_第4頁
天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

天津市2023-2024學年九年級數(shù)學第一學期期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若關于的一元二次方程有實數(shù)根,則取值范圍是()A. B. C. D.2.如圖,菱形在第一象限內,,反比例函數(shù)的圖象經過點,交邊于點,若的面積為,則的值為()A. B. C. D.43.三張背面完全相同的數(shù)字牌,它們的正面分別印有數(shù)字1,2,3,將它們背面朝上,洗勻后隨機抽取一張,記錄牌上的數(shù)字并把牌放回,再重復這樣的步驟兩次,得到三個數(shù)字a、b、c,則以a、b、c為邊長能構成等腰三角形的概率是()A. B. C. D.4.方程的解是()A. B. C.或 D.或5.若,則的值為()A. B. C. D.6.如圖,在△ABC中,AB=AC,D、E、F分別是邊AB、AC、BC的中點,若CE=2,則四邊形ADFE的周長為()A.2 B.4 C.6 D.87.下列事件中,屬于必然事件的是()A.明天太陽從北邊升起 B.實心鉛球投入水中會下沉C.籃球隊員在罰球線投籃一次,投中 D.拋出一枚硬幣,落地后正面向上8.解方程,選擇最適當?shù)姆椒ㄊ牵ǎ〢.直接開平方法 B.配方法 C.公式法 D.因式分解法9.如圖所示的物體組合,它的左視圖是()A. B. C. D.10.如圖所示幾何體的主視圖是()A. B. C. D.11.如圖,在矩形ABCD中,AB=4,BC=6,將矩形ABCD繞B逆時針旋轉30°后得到矩形GBEF,延長DA交FG于點H,則GH的長為()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣312.如圖,已知邊長為2的正三角形ABC頂點A的坐標為(0,6),BC的中點D在y軸上,且在A的下方,點E是邊長為2,中心在原點的正六邊形的一個頂點,把這個正六邊形繞中心旋轉一周,在此過程中DE的最小值為A.3 B. C.4 D.二、填空題(每題4分,共24分)13.將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線,若直線y=x+b與這兩條拋物線共有3個公共點,則b的取值范圍為_____.14.如圖,以點P為圓心的圓弧與x軸交于A,B兩點,點P的坐標為(4,2),點A的坐標為(2,0),則點B的坐標為______.15.若線段AB=10cm,點C是線段AB的黃金分割點,則AC的長為_____cm.(結果保留根號)16.如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.17.某計算機程序第一次算得m個數(shù)據(jù)的平均數(shù)為x,第二次算得另外n個數(shù)據(jù)的平均數(shù)為y,則這個數(shù)據(jù)的平均數(shù)等于______.18.若拋物線y=2x2+6x+m與x軸有兩個交點,則m的取值范圍是_____.三、解答題(共78分)19.(8分)用適當?shù)姆椒ń夥匠蹋?)4(x-1)2=9(2)20.(8分)小瑜同學想測量小區(qū)內某棟樓房MA的高度,設計測量方案如下:她從樓底A處前行5米到達B處,沿斜坡BD向上行走16米,到達坡頂D處(A、B、C在同一條直線上),已知斜坡BD的坡角α為12.8°,小瑜的眼睛到地面的距離DE為1.7米,她站在坡頂測得樓頂M的仰角恰好為45°.根據(jù)以上數(shù)據(jù),請你求出樓房MA的高度.(計算結果精確到0.1米)(參考數(shù)據(jù):sin12.8°≈,cos12.8°≈,tan12.8°≈)21.(8分)如圖,已知均在上,請用無刻度的直尺作圖.如圖1,若點是的中點,試畫出的平分線;如圖2,若.試畫出的平分線.22.(10分)如圖,取△ABC的邊AB的中點O,以O為圓心AB為半徑作⊙O交BC于點D,過點D作⊙O的切線DE,若DE⊥AC,垂足為點E.(1)求證:△ABC是等腰三角形;(2)若DE=1,∠BAC=120°,則的長為.23.(10分)四張大小、質地均相同的卡片上分別標有數(shù)字1,2,3,4,現(xiàn)將標有數(shù)字的一面朝下扣在桌子上,從中隨機抽取一張(不放回),再從桌子上剩下的3張中隨機抽取第二張.(1)用畫樹狀圖的方法,列出前后兩次抽得的卡片上所標數(shù)字的所有可能情況;(2)計算抽得的兩張卡片上的數(shù)字之積為奇數(shù)的概率是多少?24.(10分)一只不透明袋子中裝有1個紅球,2個黃球,這些球除顏色外都相同,小明攪勻后從中任意摸出一個球,記錄顏色后放回、攪勻,再從中任意摸出1個球,用樹狀圖或列表法列出摸出球的所有等可能情況,并求兩次摸出的球都是黃色的概率.25.(12分)如圖,在□中,是上一點,且,與的延長線交點.(1)求證:△∽△;(2)若△的面積為1,求□的面積.26.已知,如圖,△ABC中,AD是中線,且CD2=BE·BA.求證:ED·AB=AD·BD.

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)△=b2-4ac≥0,一元二次方程有實數(shù)根,列出不等式,求解即可.【詳解】解:∵關于x的一元二次方程有實數(shù)根,∴解得:.故選:D.本題考查一元二次方程根的判別式.一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關系:①當△>0時,方程有兩個不相等的實數(shù)根;②當△=0時,方程有兩個相等的實數(shù)根;③當△<0時,方程無實數(shù)根.2、C【分析】過A作AE⊥x軸于E,設OE=,則AE=,OA=,即菱形邊長為,再根據(jù)△AOD的面積等于菱形面積的一半建立方程可求出,利用點A的橫縱坐標之積等于k即可求解.【詳解】如圖,過A作AE⊥x軸于E,設OE=,在Rt△AOE中,∠AOE=60°∴AE=,OA=∴A,菱形邊長為由圖可知S菱形AOCB=2S△AOD∴,即∴∴故選C.本題考查了反比例函數(shù)與幾何綜合問題,利用特殊角度的三角函數(shù)值表示出菱形邊長及A點坐標是解決本題的關鍵.3、C【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與構成等腰三角形的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:∵共有27種等可能的結果,構成等腰三角形的有15種情況,∴以a、b、c為邊長正好構成等腰三角形的概率是:.故選:C.本題考查了列表法或樹狀圖法求概率.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.4、C【解析】方程左邊已經是兩個一次因式之積,故可化為兩個一次方程,解這兩個一元一次方程即得答案.【詳解】解:∵,∴x-1=0或x-2=0,解得:或.故選:C.本題考查了一元二次方程的解法,屬于基本題型,熟練掌握分解因式解方程的方法是關鍵.5、A【分析】根據(jù)比例的性質,可用b表示a,根據(jù)分式的性質,可得答案.【詳解】由,得4b=a?b.,解得a=5b,故選:A.本題考查了比例的性質,利用比例的性質得出b表示a是解題關鍵.6、D【分析】根據(jù)三角形的中點的概念求出AB、AC,根據(jù)三角形中位線定理求出DF、EF,計算得到答案.【詳解】解:∵點E是AC的中點,AB=AC,∴AB=AC=4,∵D是邊AB的中點,∴AD=2,∵D、F分別是邊、AB、BC的中點,∴DF=AC=2,同理,EF=2,∴四邊形ADFE的周長=AD+DF+FE+EA=8,故選:D.本題考查的是三角形中位線定理,三角形的中位線平行于第三邊,且等于第三邊的一半.7、B【解析】必然事件就是一定會發(fā)生的事件,依據(jù)定義即可判斷.【詳解】A、明天太陽從北邊升起是不可能事件,錯誤;B、實心鉛球投入水中會下沉是必然事件,正確;C、籃球隊員在罰球線投籃一次,投中是隨機事件,錯誤;D、拋出一枚硬幣,落地后正面向上是隨機事件,錯誤;故選B.考查的是必然事件、不可能事件、隨機事件的概念,必然事件是指在一定條件下,一定發(fā)生的事件.8、D【解析】根據(jù)方程含有公因式,即可判定最適當?shù)姆椒ㄊ且蚴椒纸夥?【詳解】由已知,得方程含有公因式,∴最適當?shù)姆椒ㄊ且蚴椒纸夥ü蔬x:D.此題主要考查一元二次方程解法的選擇,熟練掌握,即可解題.9、D【分析】通過對簡單組合體的觀察,從左邊看圓柱是一個長方形,從左邊看正方體是一個正方形,但是兩個立體圖形是并排放置的,正方體的左視圖被圓柱的左視圖擋住了,只能看到長方形,鄰邊用虛線畫出即可.【詳解】從左邊看圓柱的左視圖是一個長方形,從左邊看正方體的左視圖是一個正方形,從左邊看圓柱與正方體組合體的左視圖是一個長方形,兩圖形的鄰邊用虛線畫出,則如圖所示的物體組合的左視圖如D選項所示,故選:D.本題考查了簡單組合體的三視圖.解答此題要注意進行觀察和思考,既要豐富的數(shù)學知識,又要有一定的生活經驗和空間想象力.10、C【解析】根據(jù)主視圖的定義即可得出答案.【詳解】從正面看,共有兩列,第一列有兩個小正方形,第二列有一個小正方形,在下方,只有選項C符合故答案選擇C.本題考查的是三視圖,比較簡單,需要熟練掌握三視圖的畫法.11、A【分析】作輔助線,構建直角△AHM,先由旋轉得BG的長,根據(jù)旋轉角為30°得∠GBA=30°,利用30°角的三角函數(shù)可得GM和BM的長,由此得AM和HM的長,相減可得結論.【詳解】如圖,延長BA交GF于M,由旋轉得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故選:A.考查了矩形的性質、旋轉的性質、特殊角的三角函數(shù)及直角三角形30°的性質,解題關鍵是直角三角形30°所對的直角邊等于斜邊的一半及特殊角的三角函數(shù)值.12、B【分析】首先分析得到當點E旋轉至y軸正方向上時DE最小,然后分別求得AD、OE′的長,最后求得DE′的長.【詳解】如圖,當點E旋轉至y軸正方向上時DE最?。摺鰽BC是等邊三角形,D為BC的中點,∴AD⊥BC.∵AB=BC=2,∴AD=AB?sin∠B=.∵正六邊形的邊長等于其半徑,正六邊形的邊長為2,∴OE=OE′=2∵點A的坐標為(0,1),∴OA=1.∴.故選B.二、填空題(每題4分,共24分)13、0<b<【分析】畫出圖象,利用圖象法解決即可.【詳解】解:將拋物線y=﹣x2﹣4x(﹣4≤x≤0)沿y軸折疊后得另一條拋物線為y=﹣x2+4x(0≤x≤4)畫出函數(shù)如圖,由圖象可知,當直線y=x+b經過原點時有兩個公共點,此時b=0,解,整理得x2﹣3x+b=0,若直線y=x+b與這兩條拋物線共有3個公共點,則△=9﹣4b>0,解得所以,當0<b<時,直線y=x+b與這兩條拋物線共有3個公共點,故答案為.本題考查了二次函數(shù)圖像的折疊問題,解決本題的關鍵是能夠根據(jù)題意畫出二次函數(shù)折疊后的圖像,掌握二次函數(shù)與一元二次方程的關系.14、(6,0)【詳解】解:過點P作PM⊥AB于M,則M的坐標是(4,0)∴MB=MA=4-2=2,∴點B的坐標為(6,0)15、或【分析】根據(jù)黃金分割比為計算出較長的線段長度,再求出較短線段長度即可,AC可能為較長線段,也可能為較短線段.【詳解】解:AB=10cm,C是黃金分割點,當AC>BC時,則有AC=AB=×10=,當AC<BC時,則有BC=AB=×10=,∴AC=AB-BC=10-()=,∴AC長為cm或cm.故答案為:或本題考查了黃金分割點的概念.注意這里的AC可能是較長線段,也可能是較短線段;熟記黃金比的值是解題的關鍵.16、【分析】根據(jù)菱形的性質得出△DAB是等邊三角形,進而利用全等三角形的判定得出△ABG≌△DBH,得出四邊形GBHD的面積等于△ABD的面積,進而求出即可.【詳解】解:如圖,連接BD.∵四邊形ABCD是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB是等邊三角形,∵AB=2,∴△ABD的高為,∵扇形BEF的半徑為2,圓心角為60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,設AD、BE相交于點G,設BF、DC相交于點H,在△ABG和△DBH中,,∴△ABG≌△DBH(ASA),∴四邊形GBHD的面積等于△ABD的面積,∴圖中陰影部分的面積是:S扇形EBF﹣S△ABD=.故答案是:.此題主要考查了扇形的面積計算以及全等三角形的判定與性質等知識,根據(jù)已知得出四邊形EBFD的面積等于△ABD的面積是解題關鍵.17、.【分析】根據(jù)加權平均數(shù)的基本求法,平均數(shù)等于總和除以個數(shù),即可得到答案.【詳解】平均數(shù)等于總和除以個數(shù),所以平均數(shù).本題考查求加權平均數(shù),解題的關鍵是掌握加權平均數(shù)的基本求法.18、【分析】由拋物線與x軸有兩個交點,可得出關于m的一元一次不等式,解之即可得出m的取值范圍.【詳解】∵拋物線y=2x2+6x+m與x軸有兩個交點,∴△=62﹣4×2m=36﹣8m>0,∴m.故答案為:m.本題考查了拋物線與x軸的交點,牢記“當△=b2﹣4ac>0時,拋物線與x軸有2個交點”是解答本題的關鍵.三、解答題(共78分)19、(1),;(2),【分析】(1)先在方程的兩邊同時除以4,再直接開方即可;(2)將常數(shù)項移到等式的右邊,再兩邊配上一次項系數(shù)的一半可得.【詳解】(1)解:∴,,(2)解:∴,.本題主要考查配方法解一元二次方程,熟練掌握配方法的基本步驟是解題的關鍵.20、樓房MA的高度約為25.8米【分析】根據(jù)△BCD是直角三角形,利用正弦和余弦可以求出CD,BC的長度,則可得到EC,EF的長度,再根據(jù),,利用四邊形ECAF是矩形,即可得到MA的長.【詳解】解:在Rt△BCD中,∴,在矩形ECAF中,AF=EC=5.22,EF=AC=20.6在Rt△EFM中,∴,答:樓房MA的高度約為25.8米本題考查的是解直角三角形的應用仰角俯角問題和坡度坡角問題,掌握仰角俯角的概念、熟記銳角三角函數(shù)的定義是解題的關鍵.21、見解析;見解析【分析】(1)根據(jù)題意連接OD并延長交圓上一點E,連接BE即可;(2)根據(jù)題意連接AD與BC交與一點,連接此點和O,并延長交圓上一點E,連接BE即可.【詳解】如圖:BE即為所求;如圖:BE即為所求;本題主要考查復雜作圖、圓周角定理、垂徑定理以及切線的性質的綜合應用,解決問題的關鍵是掌握平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.22、(1)證明見解析;(2)【分析】(1)連接OD,利用等邊對等角證得∠1=∠B,利用切線的性質證得OD∥AC,推出∠B=∠C,從而證明△ABC是等腰三角形;(2)連接AD,利用等腰三角形的性質證得∠B=∠C=30,BD=CD=2,求得直徑AB=,利用弧長公式即可求解.【詳解】(1)證明:連結OD.∵OB=OD,∴∠1=∠B,∵DE為⊙O的切線,∴∠ODE=90°,∵DE⊥AC,∴∠ODE=∠DEC=90°,∴OD∥AC,∴∠1=∠C.∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形;(2)連接AD,∵AB是⊙O的直徑,∴∠BDA=90,即AD⊥BC,又∵△ABC是等腰三角形,∠BAC=120,∴∠BAD=∠BAC=60,BD=CD,∴∠B=∠C=30,在Rt△CDE中,∠CED=90,DE=1,∠C=30,∴CD=2DE=2,∴BD=CD=2,在Rt△ABD中,,即,∴AB=,∴OA=OD=AB=,∠AOD=2∠B=60,∴的長為.故答案為:.本題考查了切線的性質,等腰三角形的判定和性質,銳角三角函數(shù),弧長公式等知識點的綜合運用.作出常用輔助線是解題的關鍵.23、(1)見解析(2)P(積為奇數(shù))=【分析】(1)用樹狀圖列舉出2次不放回實驗的所有可能情況即可;(2)看是奇數(shù)的情況占所有情況的多少即可.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論