2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第1頁
2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第2頁
2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第3頁
2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第4頁
2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年山東省德州市夏津縣畢業(yè)升學考試模擬卷數(shù)學卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.下列圖形中一定是相似形的是()A.兩個菱形 B.兩個等邊三角形 C.兩個矩形 D.兩個直角三角形2.在代數(shù)式中,m的取值范圍是()A.m≤3 B.m≠0 C.m≥3 D.m≤3且m≠03.甲、乙兩人沿相同的路線由A地到B地勻速前進,A、B兩地間的路程為20km.他們前進的路程為s(km),甲出發(fā)后的時間為t(h),甲、乙前進的路程與時間的函數(shù)圖象如圖所示.根據(jù)圖象信息,下列說法正確的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出發(fā)1h D.甲比乙晚到B地3h4.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正確的個數(shù)是()A.1 B.2 C.3 D.45.如果-a=-aA.a(chǎn)>0 B.a(chǎn)≥0 C.a(chǎn)≤0 D.a(chǎn)<06.已知拋物線c:y=x2+2x﹣3,將拋物線c平移得到拋物線c′,如果兩條拋物線,關(guān)于直線x=1對稱,那么下列說法正確的是()A.將拋物線c沿x軸向右平移個單位得到拋物線c′ B.將拋物線c沿x軸向右平移4個單位得到拋物線c′C.將拋物線c沿x軸向右平移個單位得到拋物線c′ D.將拋物線c沿x軸向右平移6個單位得到拋物線c′7.已知⊙O的半徑為5,弦AB=6,P是AB上任意一點,點C是劣弧的中點,若△POC為直角三角形,則PB的長度()A.1 B.5 C.1或5 D.2或48.(3分)如圖,是按一定規(guī)律排成的三角形數(shù)陣,按圖中數(shù)陣的排列規(guī)律,第9行從左至右第5個數(shù)是()A.2 B. C.5 D.9.如圖,AB是的直徑,點C,D在上,若,則的度數(shù)為A. B. C. D.10.為了支援地震災(zāi)區(qū)同學,某校開展捐書活動,九(1)班40名同學積極參與.現(xiàn)將捐書數(shù)量繪制成頻數(shù)分布直方圖如圖所示,則捐書數(shù)量在5.5~6.5組別的頻率是()A.0.1 B.0.2C.0.3 D.0.4二、填空題(共7小題,每小題3分,滿分21分)11.若式子在實數(shù)范圍內(nèi)有意義,則x的取值范圍是.12.2018年貴州省公務(wù)員、人民警察、基層培養(yǎng)項目和選調(diào)生報名人數(shù)約40.2萬人,40.2萬人用科學記數(shù)法表示為_____人.13.如圖,在直角坐標系中,⊙A的圓心A的坐標為(1,0),半徑為1,點P為直線y=x+3上的動點,過點P作⊙A的切線,切點為Q,則切線長PQ的最小值是______________.14.如圖,在Rt△ABC中,∠ACB=90°,D是AB的中點,過D點作AB的垂線交AC于點E,BC=6,sinA=,則DE=_____.15.八位女生的體重(單位:kg)分別為36、42、38、40、42、35、45、38,則這八位女生的體重的中位數(shù)為_____kg.16.在10個外觀相同的產(chǎn)品中,有2個不合格產(chǎn)品,現(xiàn)從中任意抽取1個進行檢測,抽到合格產(chǎn)品的概率是.17.如圖,在平面直角坐標系xOy中,△DEF可以看作是△ABC經(jīng)過若干次圖形的變化(平移、軸對稱、旋轉(zhuǎn))得到的,寫出一種由△ABC得到△DEF的過程:_____.三、解答題(共7小題,滿分69分)18.(10分)如圖所示,平行四邊形形ABCD中,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).(1)求證:四邊形BEDF是平行四邊形;(2)請?zhí)砑右粋€條件使四邊形BEDF為菱形.19.(5分)有大小兩種貨車,3輛大貨車與4輛小貨車一次可以運貨18噸,2輛大貨車與6輛小貨車一次可以運貨17噸.請問1輛大貨車和1輛小貨車一次可以分別運貨多少噸?目前有33噸貨物需要運輸,貨運公司擬安排大小貨車共計10輛,全部貨物一次運完,其中每輛大貨車一次運費花費130元,每輛小貨車一次運貨花費100元,請問貨運公司應(yīng)如何安排車輛最節(jié)省費用?20.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點B坐標為(4,6),點P為線段OA上一動點(與點O、A不重合),連接CP,過點P作PE⊥CP交AB于點D,且PE=PC,過點P作PF⊥OP且PF=PO(點F在第一象限),連結(jié)FD、BE、BF,設(shè)OP=t.(1)直接寫出點E的坐標(用含t的代數(shù)式表示):;(2)四邊形BFDE的面積記為S,當t為何值時,S有最小值,并求出最小值;(3)△BDF能否是等腰直角三角形,若能,求出t;若不能,說明理由.21.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.22.(10分)兩個全等的等腰直角三角形按如圖方式放置在平面直角坐標系中,OA在x軸上,已知∠COD=∠OAB=90°,OC=,反比例函數(shù)y=的圖象經(jīng)過點B.求k的值.把△OCD沿射線OB移動,當點D落在y=圖象上時,求點D經(jīng)過的路徑長.23.(12分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.求m的值和反比例函數(shù)的表達式;直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?24.(14分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點、的坐標分別為,.請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標系;請作出關(guān)于軸對稱的;點的坐標為.的面積為.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】

如果兩個多邊形的對應(yīng)角相等,對應(yīng)邊的比相等,則這兩個多邊形是相似多邊形.【詳解】解:∵等邊三角形的對應(yīng)角相等,對應(yīng)邊的比相等,∴兩個等邊三角形一定是相似形,又∵直角三角形,菱形的對應(yīng)角不一定相等,矩形的邊不一定對應(yīng)成比例,∴兩個直角三角形、兩個菱形、兩個矩形都不一定是相似形,故選:B.【點睛】本題考查了相似多邊形的識別.判定兩個圖形相似的依據(jù)是:對應(yīng)邊成比例,對應(yīng)角相等,兩個條件必須同時具備.2、D【解析】

根據(jù)二次根式有意義的條件即可求出答案.【詳解】由題意可知:解得:m≤3且m≠0故選D.【點睛】本題考查二次根式有意義的條件,解題的關(guān)鍵是熟練運用二次根式有意義的條件,本題屬于基礎(chǔ)題型.3、C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由圖象知,甲出發(fā)1小時后乙才出發(fā),乙到2小時后甲才到,故選C.4、D【解析】

由拋物線的對稱軸的位置判斷ab的符號,由拋物線與y軸的交點判斷c的符號,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線對稱軸是y軸的右側(cè),∴ab<0,∵與y軸交于負半軸,∴c<0,∴abc>0,故①正確;②∵a>0,x=﹣<1,∴﹣b<2a,∴2a+b>0,故②正確;③∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故③正確;④當x=﹣1時,y>0,∴a﹣b+c>0,故④正確.故選D.【點睛】本題主要考查了圖象與二次函數(shù)系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸和拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.5、C【解析】

根據(jù)絕對值的性質(zhì):一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.若|-a|=-a,則可求得a的取值范圍.注意1的相反數(shù)是1.【詳解】因為|-a|≥1,所以-a≥1,那么a的取值范圍是a≤1.故選C.【點睛】絕對值規(guī)律總結(jié):一個正數(shù)的絕對值是它本身,一個負數(shù)的絕對值是它的相反數(shù),1的絕對值是1.6、B【解析】∵拋物線C:y=x2+2x﹣3=(x+1)2﹣4,∴拋物線對稱軸為x=﹣1.∴拋物線與y軸的交點為A(0,﹣3).則與A點以對稱軸對稱的點是B(2,﹣3).若將拋物線C平移到C′,并且C,C′關(guān)于直線x=1對稱,就是要將B點平移后以對稱軸x=1與A點對稱.則B點平移后坐標應(yīng)為(4,﹣3),因此將拋物線C向右平移4個單位.故選B.7、C【解析】

由點C是劣弧AB的中點,得到OC垂直平分AB,求得DA=DB=3,根據(jù)勾股定理得到OD==1,若△POC為直角三角形,只能是∠OPC=90°,則根據(jù)相似三角形的性質(zhì)得到PD=2,于是得到結(jié)論.【詳解】∵點C是劣弧AB的中點,∴OC垂直平分AB,∴DA=DB=3,∴OD=,若△POC為直角三角形,只能是∠OPC=90°,則△POD∽△CPD,∴,∴PD2=4×1=4,∴PD=2,∴PB=3﹣2=1,根據(jù)對稱性得,當P在OC的左側(cè)時,PB=3+2=5,∴PB的長度為1或5.故選C.【點睛】考查了圓周角,弧,弦的關(guān)系,勾股定理,垂徑定理,正確左側(cè)圖形是解題的關(guān)鍵.8、B【解析】

根據(jù)三角形數(shù)列的特點,歸納出每一行第一個數(shù)的通用公式,即可求出第9行從左至右第5個數(shù).【詳解】根據(jù)三角形數(shù)列的特點,歸納出每n行第一個數(shù)的通用公式是,所以,第9行從左至右第5個數(shù)是=.故選B【點睛】本題主要考查歸納推理的應(yīng)用,根據(jù)每一行第一個數(shù)的取值規(guī)律,利用累加法求出第9行第五個數(shù)的數(shù)值是解決本題的關(guān)鍵,考查學生的推理能力.9、B【解析】試題解析:連接AC,如圖,∵AB為直徑,∴∠ACB=90°,∴∴故選B.點睛:在同圓或等圓中,同弧或等弧所對的圓周角相等.10、B【解析】∵在5.5~6.5組別的頻數(shù)是8,總數(shù)是40,∴=0.1.故選B.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】

根據(jù)二次根式被開方數(shù)必須是非負數(shù)的條件,要使在實數(shù)范圍內(nèi)有意義,必須.故答案為12、4.02×1.【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:40.2萬=4.02×1,故答案為:4.02×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.13、2【解析】分析:因為BP=,AB的長不變,當PA最小時切線長PB最小,所以點P是過點A向直線l所作垂線的垂足,利用△APC≌△DOC求出AP的長即可求解.詳解:如圖,作AP⊥直線y=x+3,垂足為P,此時切線長PB最小,設(shè)直線與x軸,y軸分別交于D,C.∵A的坐標為(1,0),∴D(0,3),C(﹣4,0),∴OD=3,AC=5,∴DC==5,∴AC=DC,在△APC與△DOC中,∠APC=∠COD=90°,∠ACP=∠DCO,AC=DC,∴△APC≌△DOC,∴AP=OD=3,∴PB==2.故答案為2.點睛:本題考查了切線的性質(zhì),全等三角形的判定性質(zhì),勾股定理及垂線段最短,因為直角三角形中的三邊長滿足勾股定理,所以當其中的一邊的長不變時,即可根據(jù)另一邊的取值情況確定第三邊的最大值或最小值.14、【解析】

∵在Rt△ABC中,BC=6,sinA=∴AB=10∴.∵D是AB的中點,∴AD=AB=1.∵∠C=∠EDA=90°,∠A=∠A∴△ADE∽△ACB,∴即解得:DE=.15、1【解析】

根據(jù)中位數(shù)的定義,結(jié)合圖表信息解答即可.【詳解】將這八位女生的體重重新排列為:35、36、38、38、40、42、42、45,則這八位女生的體重的中位數(shù)為=1kg,故答案為1.【點睛】本題考查了中位數(shù),確定中位數(shù)的時候一定要先排好順序,然后再根據(jù)個數(shù)是奇數(shù)或偶數(shù)來確定中位數(shù),如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求,如果是偶數(shù)個則找中間兩位數(shù)的平均數(shù),中位數(shù)有時不一定是這組數(shù)據(jù)的數(shù).16、【解析】

試題分析:根據(jù)概率的意義,用符合條件的數(shù)量除以總數(shù)即可,即.考點:概率17、平移,軸對稱【解析】分析:根據(jù)平移的性質(zhì)和軸對稱的性質(zhì)即可得到由△OCD得到△AOB的過程.詳解:△ABC向上平移5個單位,再沿y軸對折,得到△DEF,故答案為:平移,軸對稱.點睛:考查了坐標與圖形變化-旋轉(zhuǎn),平移,軸對稱,解題時需要注意:平移的距離等于對應(yīng)點連線的長度,對稱軸為對應(yīng)點連線的垂直平分線,旋轉(zhuǎn)角為對應(yīng)點與旋轉(zhuǎn)中心連線的夾角的大?。?、解答題(共7小題,滿分69分)18、見解析【解析】

(1)根據(jù)平行四邊形的性質(zhì)可得AB∥DC,OB=OD,由平行線的性質(zhì)可得∠OBE=∠ODF,利用ASA判定△BOE≌△DOF,由全等三角形的性質(zhì)可得EO=FO,根據(jù)對角線互相平分的四邊形是平行四邊形即可判定四邊形BEDF是平行四邊形;(2)添加EF⊥BD(本題添加的條件不唯一),根據(jù)對角線互相垂直的平行四邊形為菱形即可判定平行四邊形BEDF為菱形.【詳解】(1)∵四邊形ABCD是平行四邊形,O是BD的中點,∴AB∥DC,OB=OD,∴∠OBE=∠ODF,又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA),∴EO=FO,∴四邊形BEDF是平行四邊形;(2)EF⊥BD.∵四邊形BEDF是平行四邊形,∵EF⊥BD,∴平行四邊形BEDF是菱形.【點睛】本題考查了平行四邊形的性質(zhì)與判定、菱形的判定,熟知平行四邊形的性質(zhì)與判定及菱形的判定方法是解決問題的關(guān)鍵.19、(1)1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸;(2)貨運公司應(yīng)安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【解析】

(1)設(shè)1輛大貨車和1輛小貨車一次可以分別運貨噸和噸,根據(jù)“3輛大貨車與4輛小貨車一次可以運貨18噸、2輛大貨車與6輛小貨車一次可以運貨17噸”列方程組求解可得;(2)因運輸33噸且用10輛車一次運完,故10輛車所運貨不低于10噸,所以列不等式,大貨車運費高于小貨車,故用大貨車少費用就小進行安排即可.【詳解】(1)解:設(shè)1輛大貨車一次可以運貨x噸,1輛小貨車一次可以運貨y噸,依題可得:

,

解得:.

答:1輛大貨車一次可以運貨4噸,1輛小貨車一次可以運貨噸.

(2)解:設(shè)大貨車有m輛,則小貨車10-m輛,依題可得:

4m+(10-m)≥33

m≥0

10-m≥0

解得:≤m≤10,

∴m=8,9,10;

∴當大貨車8輛時,則小貨車2輛;

當大貨車9輛時,則小貨車1輛;

當大貨車10輛時,則小貨車0輛;

設(shè)運費為W=130m+100(10-m)=30m+1000,

∵k=30〉0,

∴W隨x的增大而增大,

∴當m=8時,運費最少,

∴W=130×8+100×2=1240(元),

答:貨運公司應(yīng)安排大貨車8輛時,小貨車2輛時最節(jié)省費用.【點睛】考查了二元一次方程組和一元一次不等式的應(yīng)用,體現(xiàn)了數(shù)學建模思想,考查了學生用方程解實際問題的能力,解題的關(guān)鍵是根據(jù)題意建立方程組,并利用不等式求解大貨車的數(shù)量,解題時注意題意中一次運完的含義,此類試題常用的方法為建立方程,利用不等式或者一次函數(shù)性質(zhì)確定方案.20、(1)、(t+6,t);(2)、當t=2時,S有最小值是16;(3)、理由見解析.【解析】

(1)如圖所示,過點E作EG⊥x軸于點G,則∠COP=∠PGE=90°,由題意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,則OG=OP+PG=6+t,則點E的坐標為(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴,∴,∴AD=t(4﹣t),∴BD=AB﹣AD=6﹣t(4﹣t)=t2﹣t+6,∵EG⊥x軸、FP⊥x軸,且EG=FP,∴四邊形EGPF為矩形,∴EF⊥BD,EF=PG,∴S四邊形BEDF=S△BDF+S△BDE=×BD×EF=×(t2﹣t+6)×6=(t﹣2)2+16,∴當t=2時,S有最小值是16;(3)①假設(shè)∠FBD為直角,則點F在直線BC上,∵PF=OP<AB,∴點F不可能在BC上,即∠FBD不可能為直角;②假設(shè)∠FDB為直角,則點D在EF上,∵點D在矩形的對角線PE上,∴點D不可能在EF上,即∠FDB不可能為直角;③假設(shè)∠BFD為直角且FB=FD,則∠FBD=∠FDB=45°,如圖2,作FH⊥BD于點H,則FH=PA,即4﹣t=6﹣t,方程無解,∴假設(shè)不成立,即△BDF不可能是等腰直角三角形.21、(1)50;(2)240;(3).【解析】

用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.22、(1)k=2;(2)點D經(jīng)過的路徑長為.【解析】

(1)根據(jù)題意求得點B的坐標,再代入求得k值即可;(2)設(shè)平移后與反比例函數(shù)圖象的交點為D′,由平移性質(zhì)可知DD′∥OB,過D′作D′E⊥x軸于點E,交DC于點F,設(shè)CD交y軸于點M(如圖),根據(jù)已知條件可求得點D的坐標為(﹣1,1),設(shè)D′橫坐標為t,則OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論