2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題含解析_第1頁(yè)
2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題含解析_第2頁(yè)
2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題含解析_第3頁(yè)
2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題含解析_第4頁(yè)
2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年江蘇省金壇區(qū)中考五模數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1.正比例函數(shù)y=2kx的圖象如圖所示,則y=(k-2)x+1-k的圖象大致是()A.B.C.D.2.已知⊙O的半徑為3,圓心O到直線L的距離為2,則直線L與⊙O的位置關(guān)系是()A.相交 B.相切 C.相離 D.不能確定3.拋物線的頂點(diǎn)坐標(biāo)是()A.(2,3) B.(-2,3) C.(2,-3) D.(-2,-3)4.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為()A.7 B.8 C.9 D.105.如圖,在等腰直角三角形ABC中,∠C=90°,D為BC的中點(diǎn),將△ABC折疊,使點(diǎn)A與點(diǎn)D重合,EF為折痕,則sin∠BED的值是()A. B. C. D.6.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.7.如圖的幾何體中,主視圖是中心對(duì)稱圖形的是()A. B. C. D.8.如圖,等腰直角三角形的頂點(diǎn)A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°9.一元二次方程(x+3)(x-7)=0的兩個(gè)根是A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-710.如圖,AD∥BE∥CF,直線l1,l2與這三條平行線分別交于點(diǎn)A,B,C和點(diǎn)D,E,F(xiàn).已知AB=1,BC=3,DE=2,則EF的長(zhǎng)為()A.4 B..5 C.6 D.8二、填空題(共7小題,每小題3分,滿分21分)11.函數(shù)y=的自變量x的取值范圍為_(kāi)___________.12.如圖,為了測(cè)量鐵塔AB高度,在離鐵塔底部(點(diǎn)B)60米的C處,測(cè)得塔頂A的仰角為30°,那么鐵塔的高度AB=________米.13.若一次函數(shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過(guò)第一、三、四象限,則是k的值可以是_____.(寫出一個(gè)即可).14.如圖,在圓心角為90°的扇形OAB中,半徑OA=1cm,C為的中點(diǎn),D、E分別是OA、OB的中點(diǎn),則圖中陰影部分的面積為_(kāi)____cm1.15.化簡(jiǎn)的結(jié)果等于__.16.方程=的解是____.17.如圖,把△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)35°,得到△A’B’C,A’B’交AC于點(diǎn)D,若∠A’DC=90°,則∠A=°.三、解答題(共7小題,滿分69分)18.(10分)如圖,將△ABC放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn)A、點(diǎn)B、點(diǎn)C均落在格點(diǎn)上.(I)計(jì)算△ABC的邊AC的長(zhǎng)為_(kāi)____.(II)點(diǎn)P、Q分別為邊AB、AC上的動(dòng)點(diǎn),連接PQ、QB.當(dāng)PQ+QB取得最小值時(shí),請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出線段PQ、QB,并簡(jiǎn)要說(shuō)明點(diǎn)P、Q的位置是如何找到的_____(不要求證明).19.(5分)先化簡(jiǎn):,然后從的范圍內(nèi)選取一個(gè)合適的整數(shù)作為x的值代入求值.20.(8分)如圖,AB是⊙O的直徑,D為⊙O上一點(diǎn),過(guò)弧BD上一點(diǎn)T作⊙O的切線TC,且TC⊥AD于點(diǎn)C.(1)若∠DAB=50°,求∠ATC的度數(shù);(2)若⊙O半徑為2,TC=3,求AD的長(zhǎng).21.(10分)如圖,一次函數(shù)y=kx+b的圖象與二次函數(shù)y=﹣x2+c的圖象相交于A(﹣1,2),B(2,n)兩點(diǎn).(1)求一次函數(shù)和二次函數(shù)的解析式;(2)根據(jù)圖象直接寫出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)設(shè)二次函數(shù)y=﹣x2+c的圖象與y軸相交于點(diǎn)C,連接AC,BC,求△ABC的面積.22.(10分)如圖,菱形ABCD的邊長(zhǎng)為20cm,∠ABC=120°,對(duì)角線AC,BD相交于點(diǎn)O,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以4cm/s的速度,沿A→B的路線向點(diǎn)B運(yùn)動(dòng);過(guò)點(diǎn)P作PQ∥BD,與AC相交于點(diǎn)Q,設(shè)運(yùn)動(dòng)時(shí)間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,過(guò)點(diǎn)P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點(diǎn)N,當(dāng)t為何值時(shí),點(diǎn)P、M、N在一直線上?(3)直線PN與AC相交于H點(diǎn),連接PM,NM,是否存在某一時(shí)刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.23.(12分)為了解某市市民“綠色出行”方式的情況,某校數(shù)學(xué)興趣小組以問(wèn)卷調(diào)查的形式,隨機(jī)調(diào)查了某市部分出行市民的主要出行方式(參與問(wèn)卷調(diào)查的市民都只從以下五個(gè)種類中選擇一類),并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖.種類ABCDE出行方式共享單車步行公交車的士私家車根據(jù)以上信息,回答下列問(wèn)題:(1)參與本次問(wèn)卷調(diào)查的市民共有人,其中選擇B類的人數(shù)有人;(2)在扇形統(tǒng)計(jì)圖中,求A類對(duì)應(yīng)扇形圓心角α的度數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;(3)該市約有12萬(wàn)人出行,若將A,B,C這三類出行方式均視為“綠色出行”方式,請(qǐng)估計(jì)該市“綠色出行”方式的人數(shù).24.(14分)在等腰Rt△ABC中,∠ACB=90°,AC=BC,點(diǎn)D是邊BC上任意一點(diǎn),連接AD,過(guò)點(diǎn)C作CE⊥AD于點(diǎn)E.(1)如圖1,若∠BAD=15°,且CE=1,求線段BD的長(zhǎng);(2)如圖2,過(guò)點(diǎn)C作CF⊥CE,且CF=CE,連接FE并延長(zhǎng)交AB于點(diǎn)M,連接BF,求證:AM=BM.

參考答案一、選擇題(每小題只有一個(gè)正確答案,每小題3分,滿分30分)1、B【解析】試題解析:由圖象可知,正比函數(shù)y=2kx的圖象經(jīng)過(guò)二、四象限,∴2k<0,得k<0,∴k?2<0,1?k>0,∴函數(shù)y=(k?2)x+1?k圖象經(jīng)過(guò)一、二、四象限,故選B.2、A【解析】試題分析:根據(jù)圓O的半徑和,圓心O到直線L的距離的大小,相交:d<r;相切:d=r;相離:d>r;即可選出答案.解:∵⊙O的半徑為3,圓心O到直線L的距離為2,∵3>2,即:d<r,∴直線L與⊙O的位置關(guān)系是相交.故選A.考點(diǎn):直線與圓的位置關(guān)系.3、A【解析】

已知解析式為頂點(diǎn)式,可直接根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn),求頂點(diǎn)坐標(biāo).【詳解】解:y=(x-2)2+3是拋物線的頂點(diǎn)式方程,根據(jù)頂點(diǎn)式的坐標(biāo)特點(diǎn)可知,頂點(diǎn)坐標(biāo)為(2,3).故選A.【點(diǎn)睛】此題主要考查了二次函數(shù)的性質(zhì),關(guān)鍵是熟記:頂點(diǎn)式y(tǒng)=a(x-h)2+k,頂點(diǎn)坐標(biāo)是(h,k),對(duì)稱軸是x=h.4、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個(gè)幾何體的小正方體個(gè)數(shù)最多為9個(gè),故選C.【點(diǎn)睛】考查了三視圖判定幾何體,關(guān)鍵是對(duì)三視圖靈活運(yùn)用,體現(xiàn)了對(duì)空間想象能力的考查.5、A【解析】∵△DEF是△AEF翻折而成,

∴△DEF≌△AEF,∠A=∠EDF,

∵△ABC是等腰直角三角形,

∴∠EDF=45°,由三角形外角性質(zhì)得∠CDF+45°=∠BED+45°,

∴∠BED=∠CDF,

設(shè)CD=1,CF=x,則CA=CB=2,

∴DF=FA=2-x,

∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,

解得x=,

∴sin∠BED=sin∠CDF=.

故選:A.6、D【解析】

根據(jù)解一元一次不等式基本步驟:移項(xiàng)、系數(shù)化為1可得.【詳解】移項(xiàng),得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點(diǎn)睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù)不等號(hào)方向要改變.7、C【解析】解:球是主視圖是圓,圓是中心對(duì)稱圖形,故選C.8、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點(diǎn)睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問(wèn)題的關(guān)鍵.9、C【解析】

根據(jù)因式分解法直接求解即可得.【詳解】∵(x+3)(x﹣7)=0,∴x+3=0或x﹣7=0,∴x1=﹣3,x2=7,故選C.【點(diǎn)睛】本題考查了解一元二次方程——因式分解法,根據(jù)方程的特點(diǎn)選擇恰當(dāng)?shù)姆椒ㄟM(jìn)行求解是解題的關(guān)鍵.10、C【解析】

解:∵AD∥BE∥CF,根據(jù)平行線分線段成比例定理可得,即,解得EF=6,故選C.二、填空題(共7小題,每小題3分,滿分21分)11、x≥-1【解析】試題分析:由題意得,x+1≥0,解得x≥﹣1.故答案為x≥﹣1.考點(diǎn):函數(shù)自變量的取值范圍.12、20【解析】

在Rt△ABC中,直接利用tan∠ACB=tan30°==即可.【詳解】在Rt△ABC中,tan∠ACB=tan30°==,BC=60,解得AB=20.故答案為20.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是解三角形的實(shí)際應(yīng)用,解題的關(guān)鍵是熟練的掌握解三角形的實(shí)際應(yīng)用.13、1【解析】

由一次函數(shù)圖象經(jīng)過(guò)第一、三、四象限,可知k>0,﹣1<0,在范圍內(nèi)確定k的值即可.【詳解】解:因?yàn)橐淮魏瘮?shù)y=kx﹣1(k是常數(shù),k≠0)的圖象經(jīng)過(guò)第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案為1.【點(diǎn)睛】根據(jù)一次函數(shù)圖象所經(jīng)過(guò)的象限,可確定一次項(xiàng)系數(shù),常數(shù)項(xiàng)的值的符號(hào),從而確定字母k的取值范圍.14、π+﹣【解析】試題分析:如圖,連接OC,EC,由題意得△OCD≌△OCE,OC⊥DE,DE==,所以S四邊形ODCE=×1×=,S△OCD=,又S△ODE=×1×1=,S扇形OBC==,所以陰影部分的面積為:S扇形OBC+S△OCD﹣S△ODE=+﹣;故答案為.考點(diǎn):扇形面積的計(jì)算.15、.【解析】

先通分變?yōu)橥帜阜质?,然后根?jù)分式的減法法則計(jì)算即可.【詳解】解:原式.故答案為:.【點(diǎn)睛】此題考查的是分式的減法,掌握分式的減法法則是解決此題的關(guān)鍵.16、x=1【解析】

觀察可得方程最簡(jiǎn)公分母為x(x?1),去分母,轉(zhuǎn)化為整式方程求解,結(jié)果要檢驗(yàn).【詳解】方程兩邊同乘x(x?1)得:3x=1(x?1),整理、解得x=1.檢驗(yàn):把x=1代入x(x?1)≠2.∴x=1是原方程的解,故答案為x=1.【點(diǎn)睛】解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程,具體方法是方程兩邊同時(shí)乘以最簡(jiǎn)公分母,在此過(guò)程中有可能會(huì)產(chǎn)生增根,增根是轉(zhuǎn)化后整式的根,不是原方程的根,因此要注意檢驗(yàn).17、55.【解析】

試題分析:∵把△ABC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點(diǎn):1.旋轉(zhuǎn)的性質(zhì);2.直角三角形兩銳角的關(guān)系.三、解答題(共7小題,滿分69分)18、作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小【解析】

(1)利用勾股定理計(jì)算即可;(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小.【詳解】解:(1)AC==.故答案為.(2)作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最小.

故答案為作線段AB關(guān)于AC的對(duì)稱線段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此時(shí)PQ+QB的值最?。军c(diǎn)睛】本題考查作圖-應(yīng)用與設(shè)計(jì),勾股定理,軸對(duì)稱-最短問(wèn)題,垂線段最短等知識(shí),解題的關(guān)鍵是學(xué)會(huì)利用軸對(duì)稱,根據(jù)垂線段最短解決最短問(wèn)題,屬于中考??碱}型.19、,當(dāng)x=1時(shí),原式=﹣1.【解析】

先化簡(jiǎn)分式,然后將x的值代入計(jì)算即可.【詳解】解:原式==.且,∴x的整數(shù)有,∴取,當(dāng)時(shí),原式.【點(diǎn)睛】本題考查了分式的化簡(jiǎn)求值,熟練掌握分式混合運(yùn)算法則是解題的關(guān)鍵.20、(2)65°;(2)2.【解析】試題分析:(2)連接OT,根據(jù)角平分線的性質(zhì),以及直角三角形的兩個(gè)銳角互余,證得CT⊥OT,CT為⊙O的切線;(2)證明四邊形OTCE為矩形,求得OE的長(zhǎng),在直角△OAE中,利用勾股定理即可求解.試題解析:(2)連接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT為⊙O的切線;(2)過(guò)O作OE⊥AD于E,則E為AD中點(diǎn),又∵CT⊥AC,∴OE∥CT,∴四邊形OTCE為矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.考點(diǎn):2.切線的判定與性質(zhì);2.勾股定理;3.圓周角定理.21、(1)y=﹣x+1;(2)﹣1<x<2;(3)3;【解析】

(1)根據(jù)待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式即可.(2)根據(jù)圖象以及點(diǎn)A,B兩點(diǎn)的坐標(biāo)即可求出使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,根據(jù)即可求出△ABC的面積.【詳解】(1)把A(﹣1,2)代入y=﹣x2+c得:﹣1+c=2,解得:c=3,∴y=﹣x2+3,把B(2,n)代入y=﹣x2+3得:n=﹣1,∴B(2,﹣1),把A(﹣1,2)、B(2,﹣1)分別代入y=kx+b得解得:∴y=﹣x+1;(2)根據(jù)圖象得:使二次函數(shù)的值大于一次函數(shù)的值的x的取值范圍是﹣1<x<2;(3)連接AC、BC,設(shè)直線AB交y軸于點(diǎn)D,把x=0代入y=﹣x2+3得:y=3,∴C(0,3),把x=0代入y=﹣x+1得:y=1,∴D(0,1),∴CD=3﹣1=2,則【點(diǎn)睛】考查待定系數(shù)法求二次函數(shù)解析式,三角形的面積公式等,掌握待定系數(shù)法是解題的關(guān)鍵.22、(1)S=﹣2(0<t<1);(2);(3)見(jiàn)解析.【解析】

(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;

(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計(jì)算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;

(3)存在,通過(guò)畫圖可知:N在CD上時(shí),直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點(diǎn)Q關(guān)于O的對(duì)稱點(diǎn)為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時(shí),點(diǎn)P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過(guò)M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時(shí),使得直線PN平分四邊形APMN的面積.【點(diǎn)睛】考查了全等三角形的判定與性質(zhì),對(duì)稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡(jiǎn)等知識(shí)點(diǎn),計(jì)算量大,解答本題的關(guān)鍵是熟練掌握動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)所構(gòu)成的三角形各邊的關(guān)系.23、(1)800,240;(2)補(bǔ)圖見(jiàn)解析;(3)9.6萬(wàn)人.【解析】試題分析:(1)由C類別人數(shù)及其百分比可得總?cè)藬?shù),總?cè)藬?shù)乘以B類別百分比即可得;(2)根據(jù)百分比之和為1求得A類別百分比,再乘以360°和總?cè)藬?shù)可分別求得;(3)總?cè)藬?shù)乘以樣本中A、B、C三類別百分比之和可得答案.試題解析:(1)本次調(diào)查的市民有200÷25%=800(人),∴B類別的人數(shù)為800×30%=240(人),故答案為800,240;(2)∵A類人數(shù)所占百分比為1﹣(30%+25%+14%+6%)=25%,∴A類對(duì)應(yīng)扇形圓心角α的度數(shù)為360°×25%=90°,A類

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論