版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024年甘肅省武威市涼州區(qū)洪祥中學數(shù)學八年級下冊期末質(zhì)量檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.已知正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減小,則函數(shù)y=kx﹣k的圖象大致是()A. B. C. D.2.下列多項式中不能用公式進行因式分解的是()A.a(chǎn)2+a+ B.a(chǎn)2+b2-2ab C. D.3.用反證法證明:“中,若.則”時,第一步應(yīng)假設(shè)()A. B. C. D.4.歷史上對勾股定理的一種證法采用了如圖所示的圖形,其中兩個全等的直角三角形的直角邊在同一條直線上.證明中用到的面積相等關(guān)系是()A. B.C. D.5.分式,-,的最簡公分母是(
)A.5abx B.5abx3 C.15abx D.15abx26.要使二次根式有意義,則x的取值范圍在數(shù)軸上表示正確的是()A. B.C. D.7.如圖,在△ABC中,AB=AC,AD是中線,DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn),則下列四個結(jié)論中:①AB上任一點與AC上任一點到D的距離相等;②AD上任一點到AB,AC的距離相等;③∠BDE=∠CDF;④∠1=∠2;其中正確的有()A.1個 B.2個 C.3個 D.4個8.二次根式中,字母a的取值范圍是()A.a(chǎn)<1 B.a(chǎn)≤1 C.a(chǎn)≥1 D.a(chǎn)>19.如圖,在四邊形中,與相交于點,,那么下列條件中不能判定四邊形是菱形的為()A.∠OAB=∠OBA B.∠OBA=∠OBC C.AD∥BC D.AD=BC10.下列二次根式中,可與合并的二次根式是A. B. C. D.11.已知矩形的面積為36cm2,相鄰的兩條邊長為xcm和ycm,則y與x之間的函數(shù)圖像大致是A. B. C. D.12.教練要從甲、乙兩名射擊運動員中選一名成績較穩(wěn)定的運動員參加比賽.兩人在形同條件下各打了5發(fā)子彈,命中環(huán)數(shù)如下:甲:9、8、7、7、9;乙:10、8、9、7、1.應(yīng)該選()參加.A.甲 B.乙 C.甲、乙都可以 D.無法確定二、填空題(每題4分,共24分)13.一組數(shù)據(jù)為1,2,3,4,5,6,則這組數(shù)據(jù)的中位數(shù)是______.14.如圖,在平面直角坐標系中,矩形紙片OABC的頂點A,C分別在x軸,y軸的正半軸上,將紙片沿過點C的直線翻折,使點B恰好落在x軸上的點B′處,折痕交AB于點D.若OC=9,,則折痕CD所在直線的解析式為____.15.在菱形ABCD中,兩條對角線AC與BD的和是1.菱形的邊AB=5,則菱形ABCD的面積是_____.16.菱形兩對角線長分別為24和10,則這個菱形的面積是________,菱形的高為_____.17.如圖,?ABCD中,∠ABC=60°,E、F分別在CD和BC的延長線上,AE∥BD,EF⊥BC,EF=3,則AB的長是______.18.已知a+b=4,ab=2,則的值等于_____.三、解答題(共78分)19.(8分)如圖,把矩形放入平面直角坐標系中,使分別落在軸的正半軸上,其中,對角線所在直線解析式為,將矩形沿著折疊,使點落在邊上的處.(1)求點的坐標;(2)求的長度;(3)點是軸上一動點,是否存在點使得的周長最小,若存在,請求出點的坐標,如不存在,請說明理由.20.(8分)如圖,在平面直角坐標系xOy中,已知直線AB:yx+4交x軸于點A,交y軸于點B.直線CD:yx﹣1與直線AB相交于點M,交x軸于點C,交y軸于點D.(1)直接寫出點B和點D的坐標;(2)若點P是射線MD上的一個動點,設(shè)點P的橫坐標是x,△PBM的面積是S,求S與x之間的函數(shù)關(guān)系;(3)當S=20時,平面直角坐標系內(nèi)是否存在點E,使以點B、E、P、M為頂點的四邊形是平行四邊形?若存在,請直接寫出所有符合條件的點E的坐標;若不存在,說明理由.21.(8分)如圖,在中,,過點的直線,為邊上一點,過點作,交直線于,垂足為,連接,.(1)求證:;(2)當為中點時,四邊形是什么特殊四邊形?說明你的理由;(3)當為中點時,則當?shù)拇笮M足什么條件時,四邊形是正方形?請直接寫出結(jié)論.22.(10分)已知,矩形OABC在平面直角坐標系內(nèi)的位置如圖所示,點O為坐標原點,點A的坐標示為(1,0),點B的坐標為(1,8).(1)直接寫出點C的坐標為:C(____,_____);(2)已知直線AC與雙曲線y=(m≠0)在第一象限內(nèi)有一點交點Q為(5,n),①求m及n的值;②若動點P從A點出發(fā),沿折線AO→OC→CB的路徑以每秒2個單位長度的速度運動,到達B處停止,△APQ的面積為S,當t取何值時,S=1.23.(10分)如圖,在平行四邊形ABCD中,點E.F分別在AB、CD上,AE=CF,連接AF,BF,DE,CE,分別交于H、G.求證:(1)四邊形AECF是平行四邊形.(2)EF與GH互相平分.24.(10分)已知,在平面直角坐標系中,矩形OABC的邊OA、OC分別在x軸的正半軸、y軸的正半軸上,且OA、OC()的長是方程的兩個根.(1)如圖,求點A的坐標;(2)如圖,將矩形OABC沿某條直線折疊,使點A與點C重合,折痕交CB于點D,交OA于點E.求直線DE的解析式;(3)在(2)的條件下,點P在直線DE上,在直線AC上是否存在點Q,使以點A、B、P、Q為頂點的四邊形是平行四邊形.若存在,請求出點Q坐標;若不存在,請說明理由.25.(12分)如圖,正方形ABCD的對角線AC,BD相交于點O,將BD向兩個方向延長,分別至點E和點F,且使BE=DF.(1)求證:四邊形AECF是菱形;(2)若AC=4,BE=1,直接寫出菱形AECF的邊長.26.重慶不僅是網(wǎng)紅城市,更是擁有長安,力帆等大型車企的一座汽車城,為了更好的推廣和銷售汽車,每年都會在悅來會展中心舉辦大型車展.去年該車展期間大眾旗下兩品牌汽車邁騰和途觀L共計銷售240輛,邁騰銷售均價為每輛20萬元,途觀L銷售均價為每輛30萬元,兩種車型去年車展期間銷售額共計5600萬元.(1)這兩種車型在去年車展期間各銷售了多少輛?(2)在今年的該車展上,各大汽車經(jīng)銷商紛紛采取降價促銷手段,而途觀L堅持不降價,與去年相比,銷售均價不變,銷量比去年車展期間減少了a%,而邁騰銷售均價比去年降低了a%,銷量較去年增加了2a%,兩種車型今年車展期間銷售總額與去年相同,求a的值.
參考答案一、選擇題(每題4分,共48分)1、D【解析】
先根據(jù)正比例函數(shù)y=kx(k≠0)的函數(shù)值y隨x的增大而減小,判斷出k的符號,再根據(jù)一次函數(shù)的性質(zhì)即可得出結(jié)論.【詳解】解:正比例函數(shù)y=kx的函數(shù)值y隨x的增大而減小,∴k<0,一k>0,∴一次函數(shù)y=kx-k的圖像經(jīng)過一、二、四象限故選D.【點睛】本題考查的是一次函數(shù)的圖像與系數(shù)的關(guān)系,解題時注意:一次函數(shù)y=kx+b(k≠0)中,當k<0,b>0時,函數(shù)的圖像經(jīng)過一、二、四象限.2、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式進行因式分解.【詳解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正確選項為D.【點睛】此題主要考核運用公式法因式分解.解題的關(guān)鍵在于熟記整式乘法公式,要分析式子所具備的必要條件,包括符號問題.3、B【解析】
熟記反證法的步驟,直接選擇即可【詳解】解:用反證法證明命題“在△ABC中,AB≠AC,求證:∠B≠∠C”的過程中,第一步應(yīng)是假設(shè)∠B=∠C.故選:B【點睛】本題結(jié)合角的比較考查反證法,解此題關(guān)鍵要懂得反證法的意義及步驟.
反證法的步驟是:
(1)假設(shè)結(jié)論不成立;
(2)從假設(shè)出發(fā)推出矛盾;
(3)假設(shè)不成立,則結(jié)論成立.在假設(shè)結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況,如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.4、D【解析】
用三角形的面積和、梯形的面積來表示這個圖形的面積,從而證明勾股定理.【詳解】解:∵由S△EDA+S△CDE+S△CEB=S四邊形ABCD.
可知ab+c2+ab=(a+b)2,
∴c2+2ab=a2+2ab+b2,整理得a2+b2=c2,
∴證明中用到的面積相等關(guān)系是:S△EDA+S△CDE+S△CEB=S四邊形ABCD.
故選D.【點睛】本題考查勾股定理的證明依據(jù).此類證明要轉(zhuǎn)化成該圖形面積的兩種表示方法,從而轉(zhuǎn)化成方程達到證明的結(jié)果.5、D【解析】
求出ax,3b,5x2的最小公因式即可?!驹斀狻拷猓河蒩x,3b,5x2得最小公因式為15abx2,故答案為D。【點睛】本題考查了最簡公分母,即分母的最小公因式;其關(guān)鍵在于最小公因式,不僅最小,而且能被每一個分母整除。6、B【解析】
直接利用二次根式有意義的條件得出x的取值范圍進而得出答案.【詳解】解:要使二次根式有意義,則x≥0,則x的取值范圍在數(shù)軸上表示為:.故選:B.【點睛】本題主要考查了二次根式有意義的條件,正確理解二次根式的定義是解題的關(guān)鍵.7、C【解析】試題分析:根據(jù)等腰三角形的三線合一定理可得:∠1=∠2,∠BDE=∠CDF,根據(jù)角平分線的性質(zhì)可知:AD上任一點到AB、AC的距離相等,故正確的有3個,選C.8、C【解析】
由二次根式有意義的條件可知a-1≥0,解不等式即可.【詳解】由題意a-1≥0解得a≥1故選C.【點睛】本題考查了二次根式的意義,掌握被開方數(shù)需大于等于0即可解題.9、A【解析】
根據(jù)菱形的判定方法有三種:①定義:一組鄰邊相等的平行四邊形是菱形;②四邊相等;③對角線互相垂直平分的四邊形是菱形,據(jù)此判斷即可.【詳解】A.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分線,∴AB=AD,CD=BC,∴∠ABD=∠ADB,∠CBD=∠CDB,∵∠OAB=∠OBA,∴∠OAB=∠OBA=45°,∵OC與OA的關(guān)系不確定,∴無法證明四邊形ABCD的形狀,故此選項正確;B.∵AC⊥BD,BO=DO,∴AC是BD的垂直平分線,∴AB=AD,CD=BC,∴∠ABD=∠ADA,∠CBD=∠CDB,∵∠OBA=∠OBC,∴∠ABD=∠ADB=∠CBD=∠CDB,BD=BD,∴△ABD≌△CBD,∴AB=BC=AD=CD,∴四邊形ABCD是菱形,故此選項錯誤;C.∵AD∥BC,∴∠DAC=∠ACB,∵∠AOD=∠BOC,BO=DO,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,故此選項錯誤;D.∵AD=BC,BO=DO,∠BOC=∠AOD=90°,∴△AOD≌△BOC,∴AB=BC=CD=AD,∴四邊形ABCD是菱形,故此選項錯誤.故選:A.【點睛】此題考查菱形的判定,解題關(guān)鍵在于掌握菱形的三種判定方法.10、A【解析】
根據(jù)最簡二次根式的定義,對每一個選項進行化簡即可.【詳解】A、,與是同類二次根式,可以合并,該選項正確;B、,與不是同類二次根式,不可以合并,該選項錯誤;C、與不是同類二次根式,不可以合并,該選項錯誤;D、,與不是同類二次根式,不可以合并,該選項錯誤;故選擇:A.【點睛】本題考查了同類二次根式,掌握同類二次根式的定義是解題的關(guān)鍵.11、A【解析】
解:根據(jù)矩形的面積公式,得xy=36,即,是一個反比例函數(shù)故選A12、A【解析】試題分析:由題意可得,甲的平均數(shù)為:(9+8+7+7+9)÷5=8;方差為:15乙的平均數(shù)為:(10+8+9+7+1)÷5=8;方差為:15∵0.8<2,∴選擇甲射擊運動員,故選A.考點:方差.二、填空題(每題4分,共24分)13、3.5【解析】
將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù).【詳解】根據(jù)中位數(shù)的概念,可知這組數(shù)據(jù)的中位數(shù)為.【點睛】本題考查中位數(shù)的概念.14、y=x+9.【解析】
根據(jù)OC=9,先求出BC的長,繼而根據(jù)折疊的性質(zhì)以及勾股定理的性質(zhì)求出OB′的長,求得AB′的長,設(shè)AD=m,則B′D=BD=9-m,在Rt△AB′D中利用勾股定理求出x的長,進而求得點D的坐標,再利用待定系數(shù)法進行求解即可.【詳解】∵OC=9,,∴BC=15,∵四邊形OABC是矩形,∴AB=OC=9,OA=BC=15,∠COA=∠OAB=90°,∴C(0,9),∵折疊,∴B′C=BC=15,B′D=BD,在Rt△COB′中,OB′==12,∴AB′=15-12=3,設(shè)AD=m,則B′D=BD=9-m,Rt△AB′D中,AD2+B′A2=B′D2,即m2+32=(9-m)2,解得m=4,∴D(15,4)設(shè)CD所在直線解析式為y=kx+b,把C、D兩點坐標分別代入得:,解得:,∴CD所在直線解析式為y=x+9,故答案為:y=x+9.【點睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理,待定系數(shù)法求一次函數(shù)的解析式,求出點D的坐標是解本題的關(guān)鍵.15、2【解析】
根據(jù)菱形的對角線互相垂直,利用勾股定理列式求出AC?BD,再根利用菱形的面積等于對角線乘積的一半列式進行計算即可得解.【詳解】如圖,∵四邊形ABCD是菱形,∴OA=AC,OB=BD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根據(jù)勾股定理,得:OA2+OB2=AB2,即(AC+BD)2﹣AC?BD=AB2,×12﹣AC?BD=52,AC?BD=48,故菱形ABCD的面積是48÷2=2.故答案為:2.【點睛】本題考查了菱形的面積公式,菱形的對角線互相垂直平分線的性質(zhì),勾股定理的應(yīng)用,比熟記性質(zhì)是解題的關(guān)鍵.16、110cm1,cm.【解析】試題分析:已知兩對角線長分別為14cm和10cm,利用勾股定理可得到菱形的邊長=13cm,根據(jù)菱形面積==兩條對角線的乘積的一半可得菱形面積=×14×10=110cm1.又因菱形面積=底×高,即高=菱形面積÷底=cm.考點:菱形的性質(zhì);勾股定理.17、【解析】
根據(jù)平行四邊形性質(zhì)推出AB=CD,AB∥CD,得出平行四邊形ABDE,推出DE=DC=AB,根據(jù)直角三角形性質(zhì)求出CE長,即可求出AB的長.【詳解】解:∵四邊形ABCD是平行四邊形,∴AB∥DC,AB=CD,∵AE∥BD,∴四邊形ABDE是平行四邊形,∴AB=DE=CD,即D為CE中點,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE=2,∴AB=,故答案為.【點睛】本題考查了平行四邊形的性質(zhì)和判定,平行線性質(zhì),勾股定理,直角三角形斜邊上中線性質(zhì),含30度角的直角三角形性質(zhì)等知識點的應(yīng)用,此題綜合性比較強,是一道比較好的題目.18、1【解析】
將a+b、ab的值代入計算可得.【詳解】解:當a+b=4,ab=2時,===1,故答案為:1.【點睛】本題主要考查分式的加減法,解題的關(guān)鍵是掌握整體代入思想的運用及分式加減運算法則、完全平方公式.三、解答題(共78分)19、(1);(2);(3),見解析.【解析】
(1)根據(jù)點C的坐標確定b的值,利用待定系數(shù)法求出點A坐標即可解決問題;(2)在Rt△BCD中,BC=6,BD=AB=10,CD==8,OD=10-8=2,設(shè)DE=AE=x,在Rt△DEO中,根據(jù)DE2=OD2+OE2,構(gòu)建方程即可解決問題;(3)如圖作點E關(guān)于y軸的對稱點E′,連接BE′交y軸于P,此時△BPE的周長最小.利用待定系數(shù)法求出直線BE′的解析式即可解決問題;【詳解】解:,四邊形是矩形,,代入得到直線的解析式為令,得到.在中,,設(shè)在中,如圖作點關(guān)于軸的對稱點,連接交軸于,此時的周長最?。O(shè)直線的解析式為,則有,解得:直線的解析式為【點睛】本題考查一次函數(shù)綜合題、矩形的性質(zhì)、翻折變換、勾股定理等知識,解題的關(guān)鍵是熟練掌握待定系數(shù)法解決問題,學會利用軸對稱解決最短問題,屬于中考壓軸題.20、(1)B(0,4),D(0,-1);(2)S(x>-2);(3)存在,滿足條件的點E的坐標為(8,)或(﹣8,)或(﹣2,).【解析】
(1)利用y軸上的點的坐標特征即可得出結(jié)論;(2)先求出點M的坐標,再分兩種情況討論:①當P在y軸右邊時,用三角形的面積之和即可得出結(jié)論,②當P在y軸左邊時,用三角形的面積之差即可得出結(jié)論;(3)分三種情況利用對角線互相平分的四邊形是平行四邊形和線段的中點坐標的確定方法即可得出結(jié)論.【詳解】(1)∵點B是直線AB:yx+4與y軸的交點坐標,∴B(0,4).∵點D是直線CD:yx﹣1與y軸的交點坐標,∴D(0,﹣1);(2)如圖1.由,解得:.∵直線AB與CD相交于M,∴M(﹣2,).∵B(0,4),D(0,﹣1),∴BD=2.∵點P在射線MD上,∴分兩種情況討論:①當P在y軸右邊時,即x≥0時,S=S△BDM+S△BDP2(2+x);②當P在y軸左邊時,即-2<x<0時,S=S△BDM-S△BDP2(2-|x|);綜上所述:S=(x>-2).(3)如圖2,由(1)知,S,當S=20時,20,∴x=3,∴P(3,﹣2).分三種情況討論:①當BP是對角線時,取BP的中點G,連接MG并延長取一點E'使GE'=GM,設(shè)E'(m,n).∵B(0,4),P(3,﹣2),∴BP的中點坐標為(,1).∵M(﹣2,),∴1,∴m=8,n,∴E'(8,);②當AB為對角線時,同①的方法得:E(﹣8,);③當MP為對角線時,同①的方法得:E''(﹣2,).綜上所述:滿足條件的點E的坐標為(8,)、(﹣8,)、(﹣2,).【點睛】本題是一次函數(shù)綜合題,主要考查了三角形的面積的計算方法,平行四邊形的性質(zhì),解(2)掌握三角形的面積的計算方法,解(3)的關(guān)鍵是分類討論的思想解決問題.21、(1)見解析;(2)四邊形為菱形,理由見解析;(3)45°【解析】
(1)先求出四邊形ADEC是平行四邊形,根據(jù)平行四邊形的性質(zhì)推出即可;(2)求出四邊形BECD是平行四邊形,再根據(jù),根據(jù)菱形的判定推出即可;(3)求出∠CDB=90°,再根據(jù)正方形的判定推出即可.【詳解】(1)證明:∵∴又∵∴又∵∴四邊形為平行四邊形∴(2)四邊形為菱形,理由如下:∵為中點∴,由(1)得:∴四邊形為平行四邊形又∵∴為菱形(3)當∠A=45°時,四邊形BECD是正方形,理由是:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D為BA中點,∴CD⊥AB,∴∠CDB=90°,∵四邊形BECD是菱形,∴菱形BECD是正方形,即時,四邊形為正方形【點睛】此題考查正方形的判定,平行四邊形的判定與性質(zhì),菱形的判定,解題關(guān)鍵在于求出四邊形ADEC是平行四邊形22、(1)B(0,8)(2)t=2.5s,7s,11.5s【解析】分析:(1)根據(jù)矩形的對邊相等的性質(zhì)直接寫出點C的坐標;(2)①設(shè)直線AC的解析式為y=kx+b(k≠0).將A(1,0)、C(0,8)兩點代入其中,即利用待定系數(shù)法求一次函數(shù)解析式;然后利用一次函數(shù)圖象上點的坐標特征,將點Q代入函數(shù)關(guān)系式求得n值;最后將Q點代入雙曲線的解析式,求得m值;②分類討論:分當0≤t≤5時,當5<t≤9時,當9<t≤14時三種情況討論求解.詳解:(1)B(1,8),(2)①設(shè)直線AC函數(shù)表達式為(),∵圖像經(jīng)過A(1,0).C(0,8),∴,解得,∴,當時,.∵Q(5,4)在上∴,∴;②㈠當0<t≤5時,AP=2t,∴,∴4t=1,∴t=2.5,㈡當5<t≤9時,OP=2t-1,CP=18-2t,∴,∴,∴,∴t=7;㈢當9<t≤14時,OP=2t-18,BP=28-2t,∴,∴,∴t=11.5,綜上所述:當t=2.5s,7s,11.5s時,△APQ的面積是1.點睛:本題考查的是反比例函數(shù)綜合題,熟知反比例函數(shù)圖象上點的坐標特點、三角形的面積公式及正方形的性質(zhì)是解答此題的關(guān)鍵.注意解(2)②時,要分類討論,以防漏解.23、見解析【解析】
(1)根據(jù)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì)可得:,,根據(jù),利用平行四邊形的判定定理可得:四邊形AECF是平行四邊形,由得四邊形AECF是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得:,根據(jù),,,可得:,,根據(jù)平行四邊形的判定定理可得:四邊形BFDE是平行四邊形,再根據(jù)平行四邊形的性質(zhì)可得:,根據(jù)平行四邊形的判定定理可得:四邊形EGFH是平行四邊形,由平行四邊形的性質(zhì)可得:與GH互相平分.【詳解】四邊形ABCD是平行四邊形,,,,四邊形AECF是平行四邊形,由得:四邊形AECF是平行四邊形,,,,,,,四邊形BFDE是平行四邊形,,四邊形EGFH是平行四邊形,與GH互相平分.【點睛】本題主要考查平行四邊形的判定定理和平行四邊形的性質(zhì),解決本題的關(guān)鍵是要熟練掌握平行四邊形的判定定理和平行四邊形的性質(zhì).24、(1)(1,0);(2);(3)存在點或或,使以點A、B、P、Q為頂點的四邊形是平行四邊形.【解析】
(1)通過解一元二次方程可求出OA的長,結(jié)合點A在x軸正半軸可得出點A的坐標;(2)連接CE,設(shè)OE=m,則AE=CE=1-m,在Rt△OCE中,利用勾股定理可求出m的值,進而可得出點E的坐標,同理可得出點D的坐標,根據(jù)點D,E的坐標,利用待定系數(shù)法可求出直線DE的解析式;(3)根據(jù)點A,C的坐標,利用待定系數(shù)法可求出直線AC的解析式,設(shè)點P的坐標為(a,2a-6),點Q的坐標為(c,-c+2),分AB為邊和AB為對角線兩種情況考慮:①當AB為邊時,利用平行四邊形的性質(zhì)可得出關(guān)于a,c的二元一次方程組,解之可得出c值,再將其代入點Q的坐標中即可得出結(jié)論;②當AB為對角線時,利用平行四邊形的對角線互相平分,可得出關(guān)于a,c的二元一次方程組,解之可得出c值,再將其代入點Q的坐標中即可得出結(jié)論.綜上,此題得解.【詳解】(1)解方程x2-12x+32=0,得:x1=2,x2=1.∵OA、OC的長是方程x2-12x+32=0的兩個根,且OA>OC,點A在x軸正半軸上,∴點A的坐標為(1,0).(2)連接CE,如圖2所示.由(1)可得:點C的坐標為(0,2),點B的坐標為(1,2).設(shè)OE=m,則AE=CE=1-m.在Rt△OCE中,∠COE=90°,OC=2,OE=m,∴CE2=OC2+OE2,即(1-m)2=22+m2,解得:m=3,∴OE=3,∴點E的坐標為(3,0).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 商品房買賣預(yù)售合同
- 旋挖鉆機買賣合同
- 借款合同法律常識
- 小學二年級數(shù)學上冊口算練習試題
- 電網(wǎng)接入合同(2篇)
- 2024-2025學年高中政治專題3.1世界文化的多樣性練新人教版必修3含解析
- 橋梁樁基檢測方案
- 合作框架協(xié)議書范本
- 財務(wù)結(jié)算協(xié)議書范本
- 蘇州經(jīng)濟開發(fā)區(qū)個人房屋購房合同范本
- SLT824-2024 水利工程建設(shè)項目文件收集與歸檔規(guī)范
- 2024年山東鐵投集團招聘筆試參考題庫含答案解析
- (完整word版)中國銀行交易流水明細清單模版
- 水體國產(chǎn)載體固化微生物
- 七年級語文課外閱讀理解練習
- MIL-STD-1916 抽樣技術(shù) (C=0 零不良)
- 理解文中重要句子含義(課堂PPT)
- 膠合板公司人員招聘與配置(模板)
- 軟件功能點估算.xls
- 燃氣輪機LM2500介紹
- (精選)淺談在小學數(shù)學教學中如何進行有效提問
評論
0/150
提交評論