版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東省濱州市達標名校中考數(shù)學模擬預測題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面四個幾何體中,左視圖是四邊形的幾何體共有()A.1個 B.2個 C.3個 D.4個2.下列實數(shù)0,,,π,其中,無理數(shù)共有()A.1個 B.2個 C.3個 D.4個3.在實數(shù)π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣44.已知3x+y=6,則xy的最大值為()A.2 B.3 C.4 D.65.觀察下列圖形,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.6.比較4,,的大小,正確的是()A.4<< B.4<<C.<4< D.<<47.如圖,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,則DE的長為()A.6 B.8 C.10 D.128.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間9.下列所給的汽車標志圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B.C. D.10.如圖,一個可以自由轉動的轉盤被等分成6個扇形區(qū)域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區(qū)域的概率是()A. B.C. D.11.如圖,把一個矩形紙片ABCD沿EF折疊后,點D、C分別落在D′、C′的位置,若∠EFB=65°,則∠AED′為()。A.70° B.65° C.50° D.25°12.如圖,在菱形紙片ABCD中,AB=4,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則sin∠AFG的值為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.按照一定規(guī)律排列依次為,…..按此規(guī)律,這列數(shù)中的第100個數(shù)是_____.14.計算:(a2)2=_____.15.現(xiàn)有八個大小相同的矩形,可拼成如圖1、2所示的圖形,在拼圖2時,中間留下了一個邊長為2的小正方形,則每個小矩形的面積是_____.16.如圖是由兩個長方體組合而成的一個立體圖形的三視圖,根據(jù)圖中所示尺寸(單位:mm),計算出這個立體圖形的表面積.17.關于x的一元二次方程kx2﹣2x+1=0有兩個不相等的實數(shù)根,則k的取值范圍是.18.如圖是由6個棱長均為1的正方體組成的幾何體,它的主視圖的面積為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,AB是半徑為2的⊙O的直徑,直線l與AB所在直線垂直,垂足為C,OC=3,P是圓上異于A、B的動點,直線AP、BP分別交l于M、N兩點.(1)當∠A=30°時,MN的長是;(2)求證:MC?CN是定值;(3)MN是否存在最大或最小值,若存在,請寫出相應的最值,若不存在,請說明理由;(4)以MN為直徑的一系列圓是否經過一個定點,若是,請確定該定點的位置,若不是,請說明理由.20.(6分)某區(qū)對即將參加中考的5000名初中畢業(yè)生進行了一次視力抽樣調查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分.請根據(jù)圖表信息回答下列問題:視力頻數(shù)(人)頻率4.0≤x<4.3200.14.3≤x<4.6400.24.6≤x<4.9700.354.9≤x<5.2a0.35.2≤x<5.510b(1)本次調查的樣本為,樣本容量為;在頻數(shù)分布表中,a=,b=,并將頻數(shù)分布直方圖補充完整;若視力在4.6以上(含4.6)均屬正常,根據(jù)上述信息估計全區(qū)初中畢業(yè)生中視力正常的學生有多少人?21.(6分)為了促進學生多樣化發(fā)展,某校組織開展了社團活動,分別設置了體育類、藝術類、文學類及其它類社團(要求人人參與社團,每人只能選擇一項).為了解學生喜愛哪種社團活動,學校做了一次抽樣調查.根據(jù)收集到的數(shù)據(jù),繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,完成下列問題:(1)此次共調查了多少人?(2)求文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù);(3)請將條形統(tǒng)計圖補充完整;(4)若該校有1500名學生,請估計喜歡體育類社團的學生有多少人?22.(8分)閱讀與應用:閱讀1:a、b為實數(shù),且a>0,b>0,因為,所以,從而(當a=b時取等號).閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結論可知:,所以當即時,函數(shù)的最小值為.閱讀理解上述內容,解答下列問題:問題1:已知一個矩形的面積為4,其中一邊長為x,則另一邊長為,周長為,求當x=__________時,周長的最小值為__________.問題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當x=__________時,的最小值為__________.問題3:某民辦學習每天的支出總費用包含以下三個部分:一是教職工工資6400元;二是學生生活費每人10元;三是其他費用.其中,其他費用與學生人數(shù)的平方成正比,比例系數(shù)為0.1.當學校學生人數(shù)為多少時,該校每天生均投入最低?最低費用是多少元?(生均投入=支出總費用÷學生人數(shù))23.(8分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.24.(10分)咸寧市某中學為了解本校學生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛情況,隨機抽取了部分學生進行問卷調查,根據(jù)調查結果繪制了如下圖所示的兩幅不完整統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:=1\*GB2⑴補全條形統(tǒng)計圖,“體育”對應扇形的圓心角是度;=2\*GB2⑵根據(jù)以上統(tǒng)計分析,估計該校名學生中喜愛“娛樂”的有人;=3\*GB2⑶在此次問卷調查中,甲、乙兩班分別有人喜愛新聞節(jié)目,若從這人中隨機抽取人去參加“新聞小記者”培訓,請用列表法或者畫樹狀圖的方法求所抽取的人來自不同班級的概率25.(10分)某新建小區(qū)要修一條1050米長的路,甲、乙兩個工程隊想承建這項工程.經了解得到以下信息(如表):工程隊每天修路的長度(米)單獨完成所需天數(shù)(天)每天所需費用(元)甲隊30n600乙隊mn﹣141160(1)甲隊單獨完成這項工程所需天數(shù)n=,乙隊每天修路的長度m=(米);(2)甲隊先修了x米之后,甲、乙兩隊一起修路,又用了y天完成這項工程(其中x,y為正整數(shù)).①當x=90時,求出乙隊修路的天數(shù);②求y與x之間的函數(shù)關系式(不用寫出x的取值范圍);③若總費用不超過22800元,求甲隊至少先修了多少米.26.(12分)為紀念紅軍長征勝利81周年,我市某中學團委擬組織學生開展唱紅歌比賽活動,為此,該校隨即抽取部分學生就“你是否喜歡紅歌”進行問卷調查,并將調查結果統(tǒng)計后繪制成如下統(tǒng)計表和扇形統(tǒng)計圖.態(tài)度非常喜歡喜歡一般不知道頻數(shù)90b3010頻率a0.350.20請你根據(jù)統(tǒng)計圖、表,提供的信息解答下列問題:(1)該校這次隨即抽取了名學生參加問卷調查:(2)確定統(tǒng)計表中a、b的值:a=,b=;(3)該校共有2000名學生,估計全校態(tài)度為“非常喜歡”的學生人數(shù).27.(12分)如圖,矩形ABCD繞點C順時針旋轉90°后得到矩形CEFG,連接DG交EF于H,連接AF交DG于M;(1)求證:AM=FM;(2)若∠AMD=a.求證:=cosα.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】簡單幾何體的三視圖.【分析】左視圖是從左邊看到的圖形,因為圓柱的左視圖是矩形,圓錐的左視圖是等腰三角形,球的左視圖是圓,正方體的左視圖是正方形,所以,左視圖是四邊形的幾何體是圓柱和正方體2個.故選B.2、B【解析】
根據(jù)無理數(shù)的概念可判斷出無理數(shù)的個數(shù).【詳解】解:無理數(shù)有:,.故選B.【點睛】本題主要考查了無理數(shù)的定義,注意帶根號的要開不盡方才是無理數(shù),無限不循環(huán)小數(shù)為無理數(shù).3、C【解析】
根據(jù)實數(shù)的大小比較即可得到答案.【詳解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案選C.【點睛】本題主要考查了實數(shù)的大小比較,解本題的要點在于統(tǒng)一根據(jù)二次根式的性質,把根號外的移到根號內,只需比較被開方數(shù)的大小.4、B【解析】
根據(jù)已知方程得到y(tǒng)=-1x+6,將其代入所求的代數(shù)式后得到:xy=-1x2+6x,利用配方法求該式的最值.【詳解】解:∵1x+y=6,∴y=-1x+6,∴xy=-1x2+6x=-1(x-1)2+1.∵(x-1)2≥0,∴-1(x-1)2+1≤1,即xy的最大值為1.故選B.【點睛】考查了二次函數(shù)的最值,解題時,利用配方法和非負數(shù)的性質求得xy的最大值.5、C【解析】
根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤;B、是軸對稱圖形,不是中心對稱圖形.故本選項錯誤;C、是軸對稱圖形,也是中心對稱圖形.故本選項正確;D、既不是軸對稱圖形,也不是中心對稱圖形.故本選項錯誤.故選C.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念:軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180度后與原圖重合.6、C【解析】
根據(jù)4=<且4=>進行比較【詳解】解:易得:4=<且4=>,所以<4<故選C.【點睛】本題主要考查開平方開立方運算。7、C【解析】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,又∵∠ADE=∠EFC,∴∠B=∠EFC,△ADE∽△EFC,∴BD∥EF,,∴四邊形BFED是平行四邊形,∴BD=EF,∴,解得:DE=10.故選C.8、A【解析】
直接利用已知無理數(shù)得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數(shù)大小,正確得出的取值范圍是解題關鍵.9、B【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念求解即可.詳解:A.是軸對稱圖形,不是中心對稱圖形;B.是軸對稱圖形,也是中心對稱圖形;C.是軸對稱圖形,不是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選B.點睛:本題考查了中心對稱圖形和軸對稱圖形的知識,關鍵是掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,圖形旋轉180°后與原圖重合.10、B【解析】試題解析:∵轉盤被等分成6個扇形區(qū)域,而黃色區(qū)域占其中的一個,∴指針指向黃色區(qū)域的概率=.故選A.考點:幾何概率.11、C【解析】
首先根據(jù)AD∥BC,求出∠FED的度數(shù),然后根據(jù)軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等,則可知∠DEF=∠FED′,最后求得∠AED′的大?。驹斀狻拷猓骸逜D∥BC,∴∠EFB=∠FED=65°,由折疊的性質知,∠DEF=∠FED′=65°,∴∠AED′=180°-2∠FED=50°,故選:C.【點睛】此題考查了長方形的性質與折疊的性質.此題比較簡單,解題的關鍵是注意數(shù)形結合思想的應用.12、B【解析】
如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.由題意可得:DE=1,∠HDE=60°,△BCD是等邊三角形,即可求DH的長,HE的長,AE的長,
NE的長,EF的長,則可求sin∠AFG的值.【詳解】解:如圖:過點E作HE⊥AD于點H,連接AE交GF于點N,連接BD,BE.
∵四邊形ABCD是菱形,AB=4,∠DAB=60°,
∴AB=BC=CD=AD=4,∠DAB=∠DCB=60°,DC∥AB
∴∠HDE=∠DAB=60°,
∵點E是CD中點
∴DE=CD=1
在Rt△DEH中,DE=1,∠HDE=60°
∴DH=1,HE=
∴AH=AD+DH=5
在Rt△AHE中,AE==1
∴AN=NE=,AE⊥GF,AF=EF
∵CD=BC,∠DCB=60°
∴△BCD是等邊三角形,且E是CD中點
∴BE⊥CD,
∵BC=4,EC=1
∴BE=1
∵CD∥AB
∴∠ABE=∠BEC=90°
在Rt△BEF中,EF1=BE1+BF1=11+(AB-EF)1.
∴EF=由折疊性質可得∠AFG=∠EFG,
∴sin∠EFG=sin∠AFG=,故選B.【點睛】本題考查了折疊問題,菱形的性質,勾股定理,添加恰當?shù)妮o助線構造直角三角形,利用勾股定理求線段長度是本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
根據(jù)按一定規(guī)律排列的一列數(shù)依次為…,可得第n個數(shù)為,據(jù)此可得第100個數(shù).【詳解】由題意,數(shù)列可改寫成,…,則后一個數(shù)的分子比前一個數(shù)的法則大2,后一個數(shù)的分母比前一個數(shù)的分母大3,∴第n個數(shù)為=,∴這列數(shù)中的第100個數(shù)為=;故答案為:.【點睛】本題考查數(shù)字類規(guī)律,解題的關鍵是讀懂題意,掌握數(shù)字類規(guī)律基本解題方法.14、a1.【解析】
根據(jù)冪的乘方法則進行計算即可.【詳解】故答案為【點睛】考查冪的乘方,掌握運算法則是解題的關鍵.15、1.【解析】
設小矩形的長為x,寬為y,則由圖1可得5y=3x;由圖2可知2y-x=2.【詳解】解:設小矩形的長為x,寬為y,則可列出方程組,,解得,則小矩形的面積為6×10=1.【點睛】本題考查了二元一次方程組的應用.16、100mm1【解析】
首先根據(jù)三視圖得到兩個長方體的長,寬,高,在分別表示出每個長方體的表面積,最后減去上面的長方體與下面的長方體的接觸面積即可.【詳解】根據(jù)三視圖可得:上面的長方體長4mm,高4mm,寬1mm,下面的長方體長8mm,寬6mm,高1mm,∴立體圖形的表面積是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案為100mm1.【點睛】此題主要考查了由三視圖判斷幾何體以及求幾何體的表面積,根據(jù)圖形看出長方體的長,寬,高是解題的關鍵.17、k<1且k≠1【解析】試題分析:根據(jù)一元二次方程的定義和△的意義得到k≠1且△>1,即(﹣2)2﹣4×k×1>1,然后解不等式即可得到k的取值范圍.解:∵關于x的一元二次方程kx2﹣2x+1=1有兩個不相等的實數(shù)根,∴k≠1且△>1,即(﹣2)2﹣4×k×1>1,解得k<1且k≠1.∴k的取值范圍為k<1且k≠1.故答案為k<1且k≠1.考點:根的判別式;一元二次方程的定義.18、1.【解析】
根據(jù)立體圖形畫出它的主視圖,再求出面積即可.【詳解】主視圖如圖所示,∵主視圖是由1個棱長均為1的正方體組成的幾何體,∴主視圖的面積為1×12=1.故答案為:1.【點睛】本題是簡單組合體的三視圖,主要考查了立體圖的左視圖,解本題的關鍵是畫出它的左視圖.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1);(2)MC?NC=5;(3)a+b的最小值為2;(4)以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.【解析】
(1)由題意得AO=OB=2、OC=3、AC=5、BC=1,根據(jù)MC=ACtan∠A=、CN=可得答案;(2)證△ACM∽△NCB得,由此即可求得答案;(3)設MC=a、NC=b,由(2)知ab=5,由P是圓上異于A、B的動點知a>0,可得b=(a>0),根據(jù)反比例函數(shù)的性質得a+b不存在最大值,當a=b時,a+b最小,據(jù)此求解可得;(4)設該圓與AC的交點為D,連接DM、DN,證△MDC∽△DNC得,即MC?NC=DC2=5,即DC=,據(jù)此知以MN為直徑的一系列圓經過定點D,此頂點D在直線AB上且CD的長為.【詳解】(1)如圖所示,根據(jù)題意知,AO=OB=2、OC=3,則AC=OA+OC=5,BC=OC﹣OB=1,∵AC⊥直線l,∴∠ACM=∠ACN=90°,∴MC=ACtan∠A=5×=,∵∠ABP=∠NBC,∴∠BNC=∠A=30°,∴CN=,則MN=MC+CN=+=,故答案為:;(2)∵∠ACM=∠NCB=90°,∠A=∠BNC,∴△ACM∽△NCB,∴,即MC?NC=AC?BC=5×1=5;(3)設MC=a、NC=b,由(2)知ab=5,∵P是圓上異于A、B的動點,∴a>0,∴b=(a>0),根據(jù)反比例函數(shù)的性質知,a+b不存在最大值,當a=b時,a+b最小,由a=b得a=,解之得a=(負值舍去),此時b=,此時a+b的最小值為2;(4)如圖,設該圓與AC的交點為D,連接DM、DN,∵MN為直徑,∴∠MDN=90°,則∠MDC+∠NDC=90°,∵∠DCM=∠DCN=90°,∴∠MDC+∠DMC=90°,∴∠NDC=∠DMC,則△MDC∽△DNC,∴,即MC?NC=DC2,由(2)知MC?NC=5,∴DC2=5,∴DC=,∴以MN為直徑的一系列圓經過定點D,此定點D在直線AB上且CD的長為.【點睛】本題考查的是圓的綜合問題,解題的關鍵是掌握相似三角形的判定與性質、三角函數(shù)的應用、反比例函數(shù)的性質等知識點.20、200名初中畢業(yè)生的視力情況200600.05【解析】
(1)根據(jù)視力在4.0≤x<4.3范圍內的頻數(shù)除以頻率即可求得樣本容量;(2)根據(jù)樣本容量,根據(jù)其對應的已知頻率或頻數(shù)即可求得a,b的值;(3)求出樣本中視力正常所占百分比乘以5000即可得解.【詳解】(1)根據(jù)題意得:20÷0.1=200,即本次調查的樣本容量為200,故答案為200;(2)a=200×0.3=60,b=10÷200=0.05,補全頻數(shù)分布圖,如圖所示,故答案為60,0.05;(3)根據(jù)題意得:5000×=3500(人),則全區(qū)初中畢業(yè)生中視力正常的學生有估計有3500人.21、(1)200;(2)108°;(3)答案見解析;(4)600【解析】試題分析:(1)根據(jù)體育人數(shù)80人,占40%,可以求出總人數(shù).(2)根據(jù)圓心角=百分比×360°即可解決問題.(3)求出藝術類、其它類社團人數(shù),即可畫出條形圖.(4)用樣本百分比估計總體百分比即可解決問題.試題解析:(1)80÷40%=200(人).
∴此次共調查200人.
(2)×360°=108°.∴文學社團在扇形統(tǒng)計圖中所占圓心角的度數(shù)為108°.
(3)補全如圖,(4)1500×40%=600(人).
∴估計該校喜歡體育類社團的學生有600人.【點睛】此題主要考查了條形圖與統(tǒng)計表以及扇形圖的綜合應用,由條形圖與扇形圖結合得出調查的總人數(shù)是解決問題的關鍵,學會用樣本估計總體的思想,屬于中考常考題型.22、問題1:28問題2:38問題3:設學校學生人數(shù)為x人,生均投入為y元,依題意得:,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數(shù)為800人時,該校每天生均投入最低,最低費用是2元.【解析】試題分析:問題1:當時,周長有最小值,求x的值和周長最小值;問題2:變形,由當x+1=時,的最小值,求出x值和的最小值;問題3:設學校學生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費用÷學生人數(shù),列出關系式,根據(jù)前兩題解法,從而求解.試題解析:問題1:∵當(x>0)時,周長有最小值,∴x=2,∴當x=2時,有最小值為=3.即當x=2時,周長的最小值為2×3=8;問題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),∴,∵當x+1=(x>-1)時,的最小值,∴x=3,∴x=3時,有最小值為3+3=8,即當x=3時,的最小值為8;問題3:設學校學生人數(shù)為x人,則生均投入y元,依題意得,因為x>0,所以,當即x=800時,y取最小值2.答:當學校學生人數(shù)為800時,該校每天生均投入最低,最低費用是2元.23、(1)證明見解析;(2)【解析】試題分析:(1)由切線性質及等量代換推出∠4=∠5,再利用等角對等邊可得出結論;(2)由已知條件得出sin∠DEF和sin∠AOE的值,利用對應角的三角函數(shù)值相等推出結論.試題解析:(1)∵DC⊥OA,∴∠1+∠3=90°,∵BD為切線,∴OB⊥BD,∴∠2+∠5=90°,∵OA=OB,∴∠1=∠2,∵∠3=∠4,∴∠4=∠5,在△DEB中,∠4=∠5,∴DE=DB.(2)作DF⊥AB于F,連接OE,∵DB=DE,∴EF=BE=3,在RT△DEF中,EF=3,DE=BD=5,EF=3,∴DF=∴sin∠DEF==,∵∠AOE=∠DEF,∴在RT△AOE中,sin∠AOE=,∵AE=6,∴AO=.【點睛】本題考查了圓的性質,切線定理,三角形相似,三角函數(shù)等知識,結合圖形正確地選擇相應的知識點與方法進行解題是關鍵.24、(1)72;(2)700;(3).【解析】試題分析:(1)根據(jù)動畫類人數(shù)及其百分比求得總人數(shù),總人數(shù)減去其他類型人數(shù)可得體育類人數(shù),用360度乘以體育類人數(shù)所占比例即可得;(2)用樣本估計總體的思想解決問題;(3)根據(jù)題意先畫出樹狀圖,得出所有情況數(shù),再根據(jù)概率公式即可得出答案.試題解析:(1)調查的學生總數(shù)為60÷30%=200(人),則體育類人數(shù)為200﹣(30+60+70)=40,補全條形圖如下:“體育”對應扇形的圓心角是360°×=72°;(2)估計該校2000名學生中喜愛“娛樂”的有:2000×=700(人),(3)將兩班報名的學生分別記為甲1、甲2、乙1、乙2,樹狀圖如圖所示:所以P(2名學生來自不同班)=.考點:扇形統(tǒng)計圖;條形統(tǒng)計圖;列表法與樹狀圖法;用樣本估計總體.25、(1)35,50;(2)①12;②y=﹣x+;③150米.【解析】
(1)用總長度÷每天修路的長度可得n的值,繼而可得乙隊單獨完成時間,再用總長度÷乙單獨完成所需時間可得乙隊每天修路的長度m;(2)①根據(jù):甲隊先修建的長度+(甲隊每天修建長度+乙隊每天修建長度)×兩隊合作時間=總長度,列式計算可得;②由①中的相等關系可得y與x之間的函數(shù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州企業(yè)章程范本
- 臨床路徑持續(xù)改進
- 2025關于藥店轉讓合同協(xié)議書
- 2025手機買賣合同的范本
- 【七年級下冊地理中圖版】4.3 工業(yè) 同步練習
- 2025集體土地房屋轉讓合同
- 2025入職登記表不等同于勞動合同
- 紡織行業(yè)美工的面料設計
- 物業(yè)管理保安工作總結
- 航空器制造與維護投資合同三篇
- 蘇教版六年級上冊分數(shù)四則混合運算100題帶答案
- 2024年考研英語(一)真題及參考答案
- 醫(yī)療組長競聘
- 2024年業(yè)績換取股權的協(xié)議書模板
- 顳下頜關節(jié)疾?。谇活M面外科學課件)
- 工業(yè)自動化設備維護保養(yǎng)指南
- 2024人教新版七年級上冊英語單詞英譯漢默寫表
- 《向心力》參考課件4
- 定制柜子保修合同協(xié)議書
- 2024至2030年中國膨潤土行業(yè)投資戰(zhàn)略分析及發(fā)展前景研究報告
- 2024年深圳中考數(shù)學真題及答案
評論
0/150
提交評論