2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷含解析_第1頁(yè)
2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷含解析_第2頁(yè)
2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷含解析_第3頁(yè)
2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷含解析_第4頁(yè)
2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年湖南省邵陽(yáng)市第十一中學(xué)高考臨考沖刺數(shù)學(xué)試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若θ是第二象限角且sinθ=,則=A. B. C. D.2.陀螺是中國(guó)民間較早的娛樂工具之一,但陀螺這個(gè)名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現(xiàn).如圖所示的網(wǎng)格紙中小正方形的邊長(zhǎng)均為1,粗線畫出的是一個(gè)陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.3.函數(shù)的最大值為,最小正周期為,則有序數(shù)對(duì)為()A. B. C. D.4.拋物線的準(zhǔn)線與軸的交點(diǎn)為點(diǎn),過(guò)點(diǎn)作直線與拋物線交于、兩點(diǎn),使得是的中點(diǎn),則直線的斜率為()A. B. C.1 D.5.已知非零向量、,若且,則向量在向量方向上的投影為()A. B. C. D.6.已知復(fù)數(shù)滿足,(為虛數(shù)單位),則()A. B. C. D.37.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a8.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.9.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.10.已知函數(shù),則在上不單調(diào)的一個(gè)充分不必要條件可以是()A. B. C.或 D.11.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)為,則()A. B. C. D.12.已知為拋物線的焦點(diǎn),點(diǎn)在拋物線上,且,過(guò)點(diǎn)的動(dòng)直線與拋物線交于兩點(diǎn),為坐標(biāo)原點(diǎn),拋物線的準(zhǔn)線與軸的交點(diǎn)為.給出下列四個(gè)命題:①在拋物線上滿足條件的點(diǎn)僅有一個(gè);②若是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為;③無(wú)論過(guò)點(diǎn)的直線在什么位置,總有;④若點(diǎn)在拋物線準(zhǔn)線上的射影為,則三點(diǎn)在同一條直線上.其中所有正確命題的個(gè)數(shù)為()A.1 B.2 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現(xiàn)從中隨機(jī)取出的種子,則取出了帶麥銹病種子的概率是_____.14.(5分)有一道描述有關(guān)等差與等比數(shù)列的問題:有四個(gè)和尚在做法事之前按身高從低到高站成一列,已知前三個(gè)和尚的身高依次成等差數(shù)列,后三個(gè)和尚的身高依次成等比數(shù)列,且前三個(gè)和尚的身高之和為cm,中間兩個(gè)和尚的身高之和為cm,則最高的和尚的身高是____________cm.15.若復(fù)數(shù)滿足,其中是虛數(shù)單位,是的共軛復(fù)數(shù),則________.16.已知等比數(shù)列的前項(xiàng)和為,,且,則__________.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)設(shè)直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),設(shè)直線(為坐標(biāo)原點(diǎn))的斜率分別為,若.(1)證明:直線過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo);(2)是否存在常數(shù),滿足?并說(shuō)明理由.18.(12分)已知函數(shù),其中,為自然對(duì)數(shù)的底數(shù).(1)當(dāng)時(shí),求函數(shù)的極值;(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,求證:函數(shù)有且僅有一個(gè)零點(diǎn).19.(12分)已知拋物線E:y2=2px(p>0),焦點(diǎn)F到準(zhǔn)線的距離為3,拋物線E上的兩個(gè)動(dòng)點(diǎn)A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點(diǎn)C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.20.(12分)已知拋物線:()上橫坐標(biāo)為3的點(diǎn)與拋物線焦點(diǎn)的距離為4.(1)求p的值;(2)設(shè)()為拋物線上的動(dòng)點(diǎn),過(guò)P作圓的兩條切線分別與y軸交于A、B兩點(diǎn).求的取值范圍.21.(12分)如圖,三棱臺(tái)的底面是正三角形,平面平面,.(1)求證:;(2)若,求直線與平面所成角的正弦值.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】由θ是第二象限角且sinθ=知:,.所以.2、C【解析】

根據(jù)三視圖可知,該幾何體是由兩個(gè)圓錐和一個(gè)圓柱構(gòu)成,由此計(jì)算出陀螺的表面積.【詳解】最上面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,下面圓錐的母線長(zhǎng)為,底面周長(zhǎng)為,側(cè)面積為,沒被擋住的部分面積為,中間圓柱的側(cè)面積為.故表面積為,故選C.【點(diǎn)睛】本小題主要考查中國(guó)古代數(shù)學(xué)文化,考查三視圖還原為原圖,考查幾何體表面積的計(jì)算,屬于基礎(chǔ)題.3、B【解析】函數(shù)(為輔助角)∴函數(shù)的最大值為,最小正周期為故選B4、B【解析】

設(shè)點(diǎn)、,設(shè)直線的方程為,由題意得出,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,結(jié)合可求得的值,由此可得出直線的斜率.【詳解】由題意可知點(diǎn),設(shè)點(diǎn)、,設(shè)直線的方程為,由于點(diǎn)是的中點(diǎn),則,將直線的方程與拋物線的方程聯(lián)立得,整理得,由韋達(dá)定理得,得,,解得,因此,直線的斜率為.故選:B.【點(diǎn)睛】本題考查直線斜率的求解,考查直線與拋物線的綜合問題,涉及韋達(dá)定理設(shè)而不求法的應(yīng)用,考查運(yùn)算求解能力,屬于中等題.5、D【解析】

設(shè)非零向量與的夾角為,在等式兩邊平方,求出的值,進(jìn)而可求得向量在向量方向上的投影為,即可得解.【詳解】,由得,整理得,,解得,因此,向量在向量方向上的投影為.故選:D.【點(diǎn)睛】本題考查向量投影的計(jì)算,同時(shí)也考查利用向量的模計(jì)算向量的夾角,考查計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】,故,故選A.7、A【解析】

令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時(shí),g(x)<0,x>0時(shí),g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個(gè)不同的零點(diǎn)x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點(diǎn)睛】解決函數(shù)零點(diǎn)問題,常常利用數(shù)形結(jié)合、等價(jià)轉(zhuǎn)化等數(shù)學(xué)思想.8、B【解析】

為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對(duì)應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.9、C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)椋瞧娣桥己瘮?shù),排除;B.,值域?yàn)椋婧瘮?shù),排除;C.,值域?yàn)?,奇函?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對(duì)于函數(shù)知識(shí)的綜合應(yīng)用.10、D【解析】

先求函數(shù)在上不單調(diào)的充要條件,即在上有解,即可得出結(jié)論.【詳解】,若在上不單調(diào),令,則函數(shù)對(duì)稱軸方程為在區(qū)間上有零點(diǎn)(可以用二分法求得).當(dāng)時(shí),顯然不成立;當(dāng)時(shí),只需或,解得或.故選:D.【點(diǎn)睛】本題考查含參數(shù)的函數(shù)的單調(diào)性及充分不必要條件,要注意二次函數(shù)零點(diǎn)的求法,屬于中檔題.11、B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.12、C【解析】

①:由拋物線的定義可知,從而可求的坐標(biāo);②:做關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,通過(guò)分析可知當(dāng)三點(diǎn)共線時(shí)取最小值,由兩點(diǎn)間的距離公式,可求此時(shí)最小值;③:設(shè)出直線方程,聯(lián)立直線與拋物線方程,結(jié)合韋達(dá)定理,可知焦點(diǎn)坐標(biāo)的關(guān)系,進(jìn)而可求,從而可判斷出的關(guān)系;④:計(jì)算直線的斜率之差,可得兩直線斜率相等,進(jìn)而可判斷三點(diǎn)在同一條直線上.【詳解】解:對(duì)于①,設(shè),由拋物線的方程得,則,故,所以或,所以滿足條件的點(diǎn)有二個(gè),故①不正確;對(duì)于②,不妨設(shè),則關(guān)于準(zhǔn)線的對(duì)稱點(diǎn)為,故,當(dāng)且僅當(dāng)三點(diǎn)共線時(shí)等號(hào)成立,故②正確;對(duì)于③,由題意知,,且的斜率不為0,則設(shè)方程為:,設(shè)與拋物線的交點(diǎn)坐標(biāo)為,聯(lián)立直線與拋物線的方程為,,整理得,則,所以,則.故的傾斜角互補(bǔ),所以,故③正確.對(duì)于④,由題意知,由③知,則,由,知,即三點(diǎn)在同一條直線上,故④正確.故選:C.【點(diǎn)睛】本題考查了拋物線的定義,考查了直線與拋物線的位置關(guān)系,考查了拋物線的性質(zhì),考查了直線方程,考查了兩點(diǎn)的斜率公式.本題的難點(diǎn)在于第二個(gè)命題,結(jié)合初中的“飲馬問題”分析出何時(shí)取最小值.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求解占圓柱形容器的的總?cè)莘e的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點(diǎn)睛】本題主要考查了體積類的幾何概型問題,屬于基礎(chǔ)題.14、【解析】

依題意設(shè)前三個(gè)和尚的身高依次為,第四個(gè)(最高)和尚的身高為,則,解得,又,解得,又因?yàn)槌傻缺葦?shù)列,則公比,故.15、【解析】

設(shè),代入已知條件進(jìn)行化簡(jiǎn),根據(jù)復(fù)數(shù)相等的條件,求得的值.【詳解】設(shè),由,得,所以,所以.故答案為:【點(diǎn)睛】本小題主要考查共軛復(fù)數(shù),考查復(fù)數(shù)相等的條件,屬于基礎(chǔ)題.16、【解析】

由題意知,繼而利用等比數(shù)列的前項(xiàng)和為的公式代入求值即可.【詳解】解:由題意知,所以.故答案為:.【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和求和公式,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見解析(0,2);(2)存在,理由見解析【解析】

(1)設(shè)直線l的方程為y=kx+b代入拋物線的方程,利用OA⊥OB,求出b,即可知直線過(guò)定點(diǎn)(2)由斜率公式分別求出,,聯(lián)立直線與拋物線,橢圓,再由根與系數(shù)的關(guān)系得,,,代入,,化簡(jiǎn)即可求解.【詳解】(1)證明:由題知,直線l的斜率存在且不過(guò)原點(diǎn),故設(shè)由可得,.,,故所以直線l的方程為故直線l恒過(guò)定點(diǎn).(2)由(1)知設(shè)由可得,,即存在常數(shù)滿足題意.【點(diǎn)睛】本題主要考查了直線與拋物線、橢圓的位置關(guān)系,直線過(guò)定點(diǎn)問題,考查學(xué)生分析解決問題的能力,屬于中檔題.18、見解析【解析】

(1)當(dāng)時(shí),函數(shù),其定義域?yàn)?,則,設(shè),,易知函數(shù)在上單調(diào)遞增,且,所以當(dāng)時(shí),,即;當(dāng)時(shí),,即,所以函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以函數(shù)在處取得極小值,為,無(wú)極大值.(2)由題可得函數(shù)的定義域?yàn)?,,設(shè),,顯然函數(shù)在上單調(diào)遞增,當(dāng)時(shí),,,所以函數(shù)在內(nèi)有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,所以函數(shù)有且僅有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn);當(dāng)時(shí),,,因?yàn)?,所以,,又,所以函?shù)在內(nèi)有一個(gè)零點(diǎn),所以函數(shù)有且僅有一個(gè)零點(diǎn).綜上,函數(shù)有且僅有一個(gè)零點(diǎn).19、(1)y2=6x(2).【解析】

(1)根據(jù)拋物線定義,寫出焦點(diǎn)坐標(biāo)和準(zhǔn)線方程,列方程即可得解;(2)根據(jù)中點(diǎn)坐標(biāo)表示出|AB|和點(diǎn)到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點(diǎn)F(,0)到準(zhǔn)線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設(shè)線段AB的中點(diǎn)為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個(gè)解,所以AB的垂直平分線與x軸的交點(diǎn)C為定點(diǎn),且點(diǎn)C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個(gè)實(shí)根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當(dāng)且僅當(dāng)9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時(shí)等號(hào)成立,所以S△ABC的最大值為.【點(diǎn)睛】此題考查根據(jù)焦點(diǎn)和準(zhǔn)線關(guān)系求拋物線方程,根據(jù)直線與拋物線位置關(guān)系求解三角形面積的最值,表示三角形的面積關(guān)系常涉及韋達(dá)定理整體代入,拋物線中需要考慮設(shè)點(diǎn)坐標(biāo)的技巧,處理最值問題常用函數(shù)單調(diào)性求解或均值不等式求最值.20、(1);(2)【解析】

(1)根據(jù)橫坐標(biāo)為3的點(diǎn)與拋物線焦點(diǎn)的距離為4,由拋物線的定義得到求解.(2)設(shè)過(guò)點(diǎn)的直線方程為,根據(jù)直線與圓相切,則有,整理得:,根據(jù)題意,建立,將韋達(dá)定理代入求解.【詳解】(1)因?yàn)闄M坐標(biāo)為3的點(diǎn)與拋物線焦點(diǎn)的距離為4,由拋物線的定義得:,解得:.(2)設(shè)過(guò)點(diǎn)的直線方程為,因?yàn)橹本€與圓相切,所以,整理得:,,由題意得:所以,,因?yàn)椋?,所?【點(diǎn)睛】本題主要考查拋物線的定義及點(diǎn)與拋物線,直線與圓的位置關(guān)系,還考查了運(yùn)算求解的能力,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)【解析】

(Ⅰ)取的中點(diǎn)為,連

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論