2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4 全等三角形中的經(jīng)典模型【六大題型】(人教版)含解析_第1頁
2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4 全等三角形中的經(jīng)典模型【六大題型】(人教版)含解析_第2頁
2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4 全等三角形中的經(jīng)典模型【六大題型】(人教版)含解析_第3頁
2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4 全等三角形中的經(jīng)典模型【六大題型】(人教版)含解析_第4頁
2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4 全等三角形中的經(jīng)典模型【六大題型】(人教版)含解析_第5頁
已閱讀5頁,還剩162頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年八年級數(shù)學(xué)上冊舉一反三系列專題12.4全等三角形中的經(jīng)典模型【六大題型】【人教版】TOC\o"1-2"\h\u【題型1平移模型】 1【題型2軸對稱模型】 4【題型3旋轉(zhuǎn)模型】 6【題型4一線三等角模型】 9【題型5倍長中線模型】 13【題型6截長補短模型】 16【知識點1平移模型】【模型解讀】把△ABC沿著某一條直線l平行移動,所得到△DEF與△ABC稱為平移型全等三角形,圖①,圖②是常見的平移型全等三角線.【常見模型】【題型1平移模型】【例1】(2022?義馬市期末)如圖,點A,E,F(xiàn),B在直線l上,AE=BF,AC∥BD,且AC=BD,求證:△ACF≌△BDE.【變式1-1】(2022?曾都區(qū)期末)如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF.老師說:還添加一個條件就可使△ABC≌△DEF.下面是課堂上三個同學(xué)的發(fā)言:甲:添加BE=CF,乙:添加AC∥DF,丙:添加∠A=∠D.(1)甲、乙、丙三個同學(xué)的說法正確的是;(2)請你從正確的說法中,選取一種給予證明.【變式1-2】(2022春?東坡區(qū)校級期末)如圖,△ABC中,AB=13cm,BC=11cm,AC=6cm,點E是BC邊的中點,點D在AB邊上,現(xiàn)將△DBE沿著BA方向向左平移至△ADF的位置,則四邊形DECF的周長為cm.【變式1-3】(2022?富順縣校級月考)如圖1,A,B,C,D在同一直線上,AB=CD,DE∥AF,且DE=AF,求證:△AFC≌△DEB.如果將BD沿著AD邊的方向平行移動,如圖2,3時,其余條件不變,結(jié)論是否成立?如果成立,請予以證明;如果不成立,請說明理由.【知識點2軸對稱模型】【模型解讀】將原圖形沿著某一條直線折疊后,直線兩邊的部分能夠完全重合,這兩個三角形稱之為軸對稱型全等三角形,此類圖形中要注意期隱含條件,即公共邊或公共角相等.【常見模型】【題型2軸對稱模型】【例2】(2022?安丘市期末)如圖,已知△ACF≌△DBE,且點A,B,C,D在同一條直線上,∠A=50°,∠F=40°.(1)求△DBE各內(nèi)角的度數(shù);(2)若AD=16,BC=10,求AB的長.【變式2-1】(2022?隴縣一模)如圖,在△ABC中,已知CD⊥AB于點D,BE⊥AC于點E,∠DCB=∠EBC.求證:AD=AE.【變式2-2】(2022?句容市期末)如圖,已知△AOD≌△BOC.求證:AC=BD.【變式2-3】(2022?海珠區(qū)校級期中)如圖,PB⊥AB,PC⊥AC,PB=PC,D是AP上一點.求證:∠BDP=∠CDP.【知識點3旋轉(zhuǎn)模型】【模型解讀】將三角形繞著公共頂點旋轉(zhuǎn)一定角度后,兩個三角形能夠完全重合,則稱這兩個三角形為旋轉(zhuǎn)型三角形,識別旋轉(zhuǎn)型三角形時,涉及對頂角相等、等角加(減)公共角的條件.【常見模型】【題型3旋轉(zhuǎn)模型】【例3】(2022?環(huán)江縣期中)如圖,AB=AE,AB∥DE,∠1=70°,∠D=110°.求證:△ABC≌△EAD.證明:∵∠1=70°,∴().又∵∠D=110°,∴().∵AB∥DE,∴().在△ABC和△EAD中,(????)(????)∴△ABC≌△EAD(AAS).【變式3-1】(2022春?濟(jì)南期末)如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點B作BC⊥AE于點C,在BC上截取CD=CE,連接AD、DE并延長AD交BE于點P;(1)求證:AD=BE;(2)試說明AD平分∠BAE;(3)如圖2,將△CDE繞著點C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.【變式3-2】(2022?高港區(qū)校級月考)已知,如圖,AD、BF相交于O點,點E、C在BF上,且BE=FC,AC=DE,AB=DF.求證:(1)AO=DO;(2)AC∥DE.【變式3-3】(2022?錦州模擬)如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖1),△ABD不動.(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖2),證明:MB=MC.(2)若將圖1中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖3),判斷并直接寫出MB、MC的數(shù)量關(guān)系.(3)在(2)中,若∠CAE的大小改變(圖4),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說明理由.【知識點4一線三等角模型】【模型解讀】基本圖形如下:此類圖形通常告訴BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【題型4一線三等角模型】【例4】(2022春?香坊區(qū)期末)已知,在△ABC中,AB=AC,D,A,E三點都在直線m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如圖①,若AB⊥AC,則BD與AE的數(shù)量關(guān)系為BD=AE,CE與AD的數(shù)量關(guān)系為CE=AD;(2)如圖②,判斷并說明線段BD,CE與DE的數(shù)量關(guān)系;(3)如圖③,若只保持∠BDA=∠AEC,BD=EF=7cm,點A在線段DE上以2cm/s的速度由點D向點E運動,同時,點C在線段EF上以xcm/s的速度由點E向點F運動,它們運動的時間為t(s).是否存在x,使得△ABD與△EAC全等?若存在,求出相應(yīng)的t的值;若不存在,請說明理由.【變式4-1】(2022?東至縣期末)如圖,在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的長.【變式4-2】(2022春?歷下區(qū)期中)CD是經(jīng)過∠BCA定點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠β.(1)若直線CD經(jīng)過∠BCA內(nèi)部,且E、F在射線CD上,①若∠BCA=90°,∠β=90°,例如圖1,則BECF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如圖2,①中的兩個結(jié)論還成立嗎?并說明理由;(2)如圖3,若直線CD經(jīng)過∠BCA外部,且∠β=∠BCA,請直接寫出線段EF、BE、AF的數(shù)量關(guān)系(不需要證明).【變式4-3】(2022?余杭區(qū)月考)如圖①,點B、C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.應(yīng)用:如圖②,在△ABC中,AB=AC,AB>BC,點D在邊BC上,且CD=2BD,點E,F(xiàn)在線段AD上.∠1=∠2=∠BAC,若△ABC的面積為15,求△ABE與△CDF的面積之和.【知識點5倍長中線模型模型】【模型解讀】中線是三角形中的重要線段之一,在利用中線解決幾何問題時,常常采用“倍長中線法”添加輔助線.所謂倍長中線法,就是將三角形的中線延長一倍,以便構(gòu)造出全等三角形,從而運用全等三角形的有關(guān)知識來解決問題的方法.【常見模型】【題型5倍長中線模型】【例5】(2022秋?博興縣期末)如圖,BD是△ABC的中線,AB=6,BC=4,求中線BD的取值范圍.【變式5-1】(2022?涪城區(qū)校級月考)如圖,在△ABC中,D是BC邊的中點,E是AD上一點,BE=AC,BE的延長線交AC于F,求證:∠AEF=∠EAF.【變式5-2】(2022?浠水縣校級模擬)(1)在△ABC中,AD為△ABC的中線,AB=6,AC=4,則AD的取值范圍是;(2)如圖,在△ABC中,AD為△ABC的中線,點E在中線AD上,且BE=AC,連接并延長BE交AC于點F.求證:AF=FE.【變式5-3】(2022?丹陽市期中)八年級一班數(shù)學(xué)興趣小組在一次活動中進(jìn)行了探究試驗活動,請你和他們一起活動吧.【探究與發(fā)現(xiàn)】(1)如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接BE,寫出圖中全等的兩個三角形【理解與應(yīng)用】(2)填空:如圖2,EP是△DEF的中線,若EF=5,DE=3,設(shè)EP=x,則x的取值范圍是.(3)已知:如圖3,AD是△ABC的中線,∠BAC=∠ACB,點Q在BC的延長線上,QC=BC,求證:AQ=2AD.【知識點6截長補短模型】【模型解讀】截長補短的方法適用于求證線段的和差倍分關(guān)系.截長,指在長線段中截取一段等于已知線段;補短,指將短線段延長,延長部分等于已知線段.該類題目中常出現(xiàn)等腰三角形、角平分線等關(guān)鍵詞句,可以采用截長補短法構(gòu)造全等三角形來完成證明過程【題型6截長補短模型】【例6】(2022秋?西崗區(qū)期末)閱讀下面材料:小明遇到這樣一個問題:如圖1,在△ABC中,AD平分∠BAC,∠ABC=2∠C.求證:AC=AB+BD;小明通過思考發(fā)現(xiàn),可以通過“截長、補短”兩種方法解決問題:方法一:如圖2,在AC上截取AE,使得AE=AB,連接DE,可以得到全等三角形,進(jìn)而解決問題.方法二:如圖3,延長AB到點E,使得BE=BD,連接DE,可以得到等腰三角形,進(jìn)而解決問題.(1)根據(jù)閱讀材料,任選一種方法證明AC=AB+BD,根據(jù)自己的解題經(jīng)驗或參考小明的方法,解決下面的問題;(2)如圖4,四邊形ABCD中,E是BC上一點,EA=ED,∠DCB=2∠B,∠DAE+∠B=90°,探究DC、CE、BE之間的數(shù)量關(guān)系,并證明.【變式6-1】(2022?蘄春縣期中)已知:如圖,在△ABC中,∠ABC=60°,△ABC的角平分線AD、CE交于點O.求證:AC=AE+CD.【變式6-2】(2022?新?lián)釁^(qū)校級月考)如圖,四邊形ABCD中,∠A=∠B=90°,E是AB的中點,DE平分∠ADC.(1)求證:CE平分∠BCD;(2)求證:AD+BC=CD;(3)若AB=12,CD=13,求S△CDE.【變式6-3】(2022?黃石期末)已知△ABC和△DEF為等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,點E在AB上,點F在射線AC上.(1)如圖1,若∠BAC=60°,點F與點C重合,求證:AF=AE+AD;(2)如圖2,若AD=AB,求證:AF=AE+BC.專題12.4全等三角形中的經(jīng)典模型【六大題型】【人教版】TOC\o"1-2"\h\u【題型1平移模型】 1【題型2軸對稱模型】 5【題型3旋轉(zhuǎn)模型】 8【題型4一線三等角模型】 14【題型5倍長中線模型】 20【題型6截長補短模型】 26【知識點1平移模型】【模型解讀】把△ABC沿著某一條直線l平行移動,所得到△DEF與△ABC稱為平移型全等三角形,圖①,圖②是常見的平移型全等三角線.【常見模型】【題型1平移模型】【例1】(2022?義馬市期末)如圖,點A,E,F(xiàn),B在直線l上,AE=BF,AC∥BD,且AC=BD,求證:△ACF≌△BDE.【分析】根據(jù)平行線的性質(zhì)得到∠CAF=∠DBE,根據(jù)SAS證明△ACF≌△BDE即可.【解答】證明:∵AE=BF,∴AE+EF=BF+EF,即AF=BE;∵AC∥BD,∴∠CAF=∠DBE,又∵AC=BD,在△ACF與△BDE中,AC=BD∠CAF=∠DBE∴△ACF≌△BDE(SAS).【變式1-1】(2022?曾都區(qū)期末)如圖,點B,E,C,F(xiàn)在一條直線上,AB=DE,AC=DF.老師說:還添加一個條件就可使△ABC≌△DEF.下面是課堂上三個同學(xué)的發(fā)言:甲:添加BE=CF,乙:添加AC∥DF,丙:添加∠A=∠D.(1)甲、乙、丙三個同學(xué)的說法正確的是甲、丙;(2)請你從正確的說法中,選取一種給予證明.【分析】(1)加上條件BE=CF或∠A=∠D的條件即可證明兩個三角形全等,添加AC∥DF不能證明△ABC≌△DEF;(2)添加BE=CF可得BC=EF,利用SSS判定△ABC≌△DEF即可,添加∠A=∠D,可用SAS證明△ABC≌△DEF.【解答】解:(1)說法正確的是:甲、丙,故答案為:甲、丙;(2)選甲的做法,證明:∵BE=CF,∴BC=EF,在△ABC和△DEF中,AB=DEAC=DF∴△ABC≌△DEF(SSS).選丙的做法,在△ABC和△DEF中,AB=DE∠A=∠D∴△ABC≌△DEF(SAS).【變式1-2】(2022春?東坡區(qū)校級期末)如圖,△ABC中,AB=13cm,BC=11cm,AC=6cm,點E是BC邊的中點,點D在AB邊上,現(xiàn)將△DBE沿著BA方向向左平移至△ADF的位置,則四邊形DECF的周長為cm.【分析】連接EF,證明△CEF≌△DFE(ASA),推出DE=CF,可得結(jié)論.【解答】解:連接EF.由平移的性質(zhì)可知,AF=DE.EF=AD,AF∥DE,EF∥AD,DF∥BC,∴∠CEF=∠DFE,∠CFE=∠DEF,在△CEF和△DFE中,∠CEF=∠EFDEF=FE∴△CEF≌△DFE(ASA),∴DE=CF,∴AF=CF=DE=3cm∵E是BC的中點,∴EC=EB=DF=5.5cm,∴四邊形DECF的周長=2(3+5.5)=17cm.故答案為:17.【變式1-3】(2022?富順縣校級月考)如圖1,A,B,C,D在同一直線上,AB=CD,DE∥AF,且DE=AF,求證:△AFC≌△DEB.如果將BD沿著AD邊的方向平行移動,如圖2,3時,其余條件不變,結(jié)論是否成立?如果成立,請予以證明;如果不成立,請說明理由.【分析】可以根據(jù)已知利用SAS判定△AFC≌△DEB.如果將BD沿著AD邊的方向平行移動,如圖(2)、(3)時,其余條件不變,結(jié)論仍然成立.可以利用全等三角形的常用的判定方法進(jìn)行驗證.【解答】解:∵AB=CD,∴AB+BC=CD+BC,即AC=BD.∵DE∥AF,∴∠A=∠D.在△AFC和△DEB中,AF=DE∠A=∠D∴△AFC≌△DEB(SAS).在(2),(3)中結(jié)論依然成立.如在(3)中,∵AB=CD,∴AB﹣BC=CD﹣BC,即AC=BD,∵AF∥DE,∴∠A=∠D.在△ACF和△DEB中,AF=DE∠A=∠D∴△ACF≌△DEB(SAS).【知識點2軸對稱模型】【模型解讀】將原圖形沿著某一條直線折疊后,直線兩邊的部分能夠完全重合,這兩個三角形稱之為軸對稱型全等三角形,此類圖形中要注意期隱含條件,即公共邊或公共角相等.【常見模型】【題型2軸對稱模型】【例2】(2022?安丘市期末)如圖,已知△ACF≌△DBE,且點A,B,C,D在同一條直線上,∠A=50°,∠F=40°.(1)求△DBE各內(nèi)角的度數(shù);(2)若AD=16,BC=10,求AB的長.【分析】(1)根據(jù)全等三角形的性質(zhì)求出∠D、∠E,根據(jù)三角形內(nèi)角和定理求出∠EBD即可;(2)根據(jù)全等三角形的性質(zhì)得出AC=BD,求出AB=CD,即可求出答案.【解答】解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=12(AD﹣【變式2-1】(2022?隴縣一模)如圖,在△ABC中,已知CD⊥AB于點D,BE⊥AC于點E,∠DCB=∠EBC.求證:AD=AE.【分析】由“AAS”可證△ADC≌△AEB,可得AD=AE.【解答】證明:∵CD⊥AB,BE⊥AC,∠DCB=∠EBC,∴∠DBC=∠ECB,∴AB=AC,在△ADC和△AEB中,∠A=∠A∠ADC=∠AEB=90°∴△ADC≌△AEB(AAS),∴AD=AE.【變式2-2】(2022?句容市期末)如圖,已知△AOD≌△BOC.求證:AC=BD.【分析】根據(jù)全等三角形的性質(zhì)和等式的性質(zhì)解答即可.【解答】證明:∵△AOD≌△BOC,∴AO=BO,CO=DO,∠AOD=∠BOC,∴∠AOD﹣∠COD=∠BOC﹣∠COD,即∠AOC=∠BOD,在△AOC和△BOD中,AO=BO∠AOC=∠BOD∴△AOC≌△BOD(SAS),∴AC=BD.【變式2-3】(2022?海珠區(qū)校級期中)如圖,PB⊥AB,PC⊥AC,PB=PC,D是AP上一點.求證:∠BDP=∠CDP.【分析】求出∠ABP=∠ACP=90°,根據(jù)HL推出Rt△ABP≌Rt△ACP,根據(jù)全等三角形的性質(zhì)得出∠BPD=∠CPD,根據(jù)SAS推出△BPD≌△CPD,即可得出答案.【解答】證明:∵PB⊥AB,PC⊥AC,∴∠ABP=∠ACP=90°,∴在Rt△ABP和Rt△ACP中AP=APPB=PC∴Rt△ABP≌Rt△ACP(HL),∴∠BPD=∠CPD,在△BPD和△CPD中PB=PC∠BPD=∠CPD∴△BPD≌△CPD,∴∠BDP=∠CDP.【知識點3旋轉(zhuǎn)模型】【模型解讀】將三角形繞著公共頂點旋轉(zhuǎn)一定角度后,兩個三角形能夠完全重合,則稱這兩個三角形為旋轉(zhuǎn)型三角形,識別旋轉(zhuǎn)型三角形時,涉及對頂角相等、等角加(減)公共角的條件.【常見模型】【題型3旋轉(zhuǎn)模型】【例3】(2022?環(huán)江縣期中)如圖,AB=AE,AB∥DE,∠1=70°,∠D=110°.求證:△ABC≌△EAD.證明:∵∠1=70°,∴∠2=110°(鄰補角的性質(zhì)).又∵∠D=110°,∴∠2=∠D(等量代換).∵AB∥DE,∴∠3=∠E(兩直線平行,內(nèi)錯角相等).在△ABC和△EAD中,(????)(????)∴△ABC≌△EAD(AAS).【分析】由鄰補角的性質(zhì)求出∠2=110°,由平行線的性質(zhì)得出∠3=∠E,根據(jù)AAS可證△ABC≌△EAD.【解答】證明:∵∠1=70°,∴∠2=110°(鄰補角的性質(zhì)),又∵∠D=110°,∴∠2=∠D(等量代換),∵AB∥DE,∴∠3=∠E(兩直線平行,內(nèi)錯角相等),在△ABC和△EAD中,∠2=∠D∠3=∠E∴△ABC≌△EAD(AAS).故答案為:∠2=110°;鄰補角的性質(zhì);∠2=∠D;等量代換;∠3=∠E;兩直線平行,內(nèi)錯角相等;∠2=∠D;∠3=∠E.【變式3-1】(2022春?濟(jì)南期末)如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點B作BC⊥AE于點C,在BC上截取CD=CE,連接AD、DE并延長AD交BE于點P;(1)求證:AD=BE;(2)試說明AD平分∠BAE;(3)如圖2,將△CDE繞著點C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.【分析】(1)利用SAS證明△BCE≌△ACD,根據(jù)全等三角形的對應(yīng)邊相等得到AD=BE.(2)根據(jù)△BCE≌△ACD,得到∠EBC=∠DAC,由∠BDP=∠ADC,得到∠BPD=∠DCA=90°,利用等腰三角形的三線合一,即可得到AD平分∠BAE;(3)AD⊥BE不發(fā)生變化.由△BCE≌△ACD,得到∠EBC=∠DAC,由對頂角相等得到∠BFP=∠AFC,根據(jù)三角形內(nèi)角和為180°,所以∠BPF=∠ACF=90°,即AD⊥BE.【解答】解:(1)∵BC⊥AE,∠BAE=45°,∴∠CBA=∠CAB,∴BC=CA,在△BCE和△ACD中,BC=AC∠BCE=∠ACD=90°∴△BCE≌△ACD(SAS),∴AD=BE.(2)∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BDP=∠ADC,∴∠BPD=∠DCA=90°,∵AB=AE,∴AD平分∠BAE.(3)AD⊥BE不發(fā)生變化.如圖2,∵△BCE≌△ACD,∴∠EBC=∠DAC,∵∠BFP=∠AFC,∴∠BPF=∠ACF=90°,∴AD⊥BE.【變式3-2】(2022?高港區(qū)校級月考)已知,如圖,AD、BF相交于O點,點E、C在BF上,且BE=FC,AC=DE,AB=DF.求證:(1)AO=DO;(2)AC∥DE.【分析】(1)易證△ABC≌△DFE,可得∠B=∠F,可證△ABO≌△DFO,可得AO=DO;(2)易證△ABC≌△DFE,可得∠DEF=∠ACB,可得AC∥DE.【解答】解:(1)∵BE=CF,∴BC=FE,在△ABC和△DFE中,AB=DFAC=DE∴△ABC≌△DFE(SSS),∴∠B=∠F,∵在△ABO和△DFO中,∠DOF=∠AOB∠B=∠F∴△ABO≌△DFO(AAS),∴AO=DO;(2)∵△ABC≌△DFE,∴∠DEF=∠ACB,∴AC∥DE.【變式3-3】(2022?錦州模擬)如圖,將兩個全等的直角三角形△ABD、△ACE拼在一起(圖1),△ABD不動.(1)若將△ACE繞點A逆時針旋轉(zhuǎn),連接DE,M是DE的中點,連接MB、MC(圖2),證明:MB=MC.(2)若將圖1中的CE向上平移,∠CAE不變,連接DE,M是DE的中點,連接MB、MC(圖3),判斷并直接寫出MB、MC的數(shù)量關(guān)系.(3)在(2)中,若∠CAE的大小改變(圖4),其他條件不變,則(2)中的MB、MC的數(shù)量關(guān)系還成立嗎?說明理由.【分析】(1)連接AM,根據(jù)全等三角形的對應(yīng)邊相等可得AD=AE,AB=AC,全等三角形對應(yīng)角相等可得∠BAD=∠CAE,再根據(jù)等腰三角形三線合一的性質(zhì)得到∠MAD=∠MAE,然后利用“邊角邊”證明△ABM和△ACM全等,根據(jù)全等三角形對應(yīng)邊相等即可得證;(2)延長DB、AE相交于E′,延長EC交AD于F,根據(jù)等腰三角形三線合一的性質(zhì)得到BD=BE′,然后求出MB∥AE′,再根據(jù)兩直線平行,內(nèi)錯角相等求出∠MBC=∠CAE,同理求出MC∥AD,根據(jù)兩直線平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根據(jù)等角對等邊即可得證;(3)延長BM交CE于F,根據(jù)兩直線平行,內(nèi)錯角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角邊”證明△MDB和△MEF全等,根據(jù)全等三角形對應(yīng)邊相等可得MB=MF,然后根據(jù)直角三角形斜邊上的中線等于斜邊的一半證明即可.【解答】證明:(1)如圖2,連接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵M(jìn)D=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,AB=AC∠BAM=∠CAM∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如圖3,延長DB、AE相交于E′,延長EC交AD于F,∴BD=BE′,CE=CF,∵M(jìn)是ED的中點,B是DE′的中點,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;解法二:如圖3中,延長CM交BD于點T.∵EC∥DT,∴∠CEM=∠TDM,在△ECM和△DTM中,∠CEM=∠TDMEM=DM∴△ECM≌△DTM(ASA),∴CM=MT,∵∠CBT=90°,∴BM=CM=MT.(3)MB=MC還成立.如圖4,延長BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M(jìn)是DE的中點,∴MD=ME,在△MDB和△MEF中,∠MDB=∠MEF∠MBD=∠MFE∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.【知識點4一線三等角模型】【模型解讀】基本圖形如下:此類圖形通常告訴BD⊥DE,AB⊥AC,CE⊥DE,那么一定有∠B=∠CAE.【題型4一線三等角模型】【例4】(2022春?香坊區(qū)期末)已知,在△ABC中,AB=AC,D,A,E三點都在直線m上,且DE=9cm,∠BDA=∠AEC=∠BAC(1)如圖①,若AB⊥AC,則BD與AE的數(shù)量關(guān)系為BD=AE,CE與AD的數(shù)量關(guān)系為CE=AD;(2)如圖②,判斷并說明線段BD,CE與DE的數(shù)量關(guān)系;(3)如圖③,若只保持∠BDA=∠AEC,BD=EF=7cm,點A在線段DE上以2cm/s的速度由點D向點E運動,同時,點C在線段EF上以xcm/s的速度由點E向點F運動,它們運動的時間為t(s).是否存在x,使得△ABD與△EAC全等?若存在,求出相應(yīng)的t的值;若不存在,請說明理由.【分析】(1)利用平角的定義和三角形內(nèi)角和定理得∠CAE=∠ABD,再利用AAS證明△ABD≌△CAE,得BD=AE,CE=AD;(2)由(1)同理可得△ABD≌△CAE,得BD=AE,CE=AD,可得答案;(3)分△DAB≌△ECA或△DAB≌△EAC兩種情形,分別根據(jù)全等三角形的性質(zhì)可解決問題.【解答】解:(1)∵∠BDA=∠AEC=∠BAC,∴∠BAD+∠CAE=∠BAD+∠ABD,∴∠CAE=∠ABD,∵∠BDA=∠AEC,BA=CA,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,故答案為:BD=AE,CE=AD;(2)DE=BD+CE,由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(3)存在,當(dāng)△DAB≌△ECA時,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此時x=2;當(dāng)△DAB≌△EAC時,∴AD=AE=4.5cm,DB=EC=7cm,∴t=AD2=94綜上:t=1,x=2或t=94,x【變式4-1】(2022?東至縣期末)如圖,在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,若DE=10,BD=3,求CE的長.【分析】由∠AEC=∠BAC=α,推出∠ECA=∠BAD,再根據(jù)AAS證明△BAD≌△ACE得CE=AD,AE=BD=3,即可得出結(jié)果.【解答】解:∵∠AEC=∠BAC=α,∴∠ECA+∠CAE=180°﹣α,∠BAD+∠CAE=180°﹣α,∴∠ECA=∠BAD,在△BAD與△ACE中,∠BDA=∠AEC∠BAD=∠ACE∴△BAD≌△ACE(AAS),∴CE=AD,AE=BD=3,∵DE=AD+AE=10,∴AD=DE﹣AE=DE﹣BD=10﹣3=7.∴CE=7.【變式4-2】(2022春?歷下區(qū)期中)CD是經(jīng)過∠BCA定點C的一條直線,CA=CB,E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠β.(1)若直線CD經(jīng)過∠BCA內(nèi)部,且E、F在射線CD上,①若∠BCA=90°,∠β=90°,例如圖1,則BECF,EF|BE﹣AF|.(填“>”,“<”,“=”);②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如圖2,①中的兩個結(jié)論還成立嗎?并說明理由;(2)如圖3,若直線CD經(jīng)過∠BCA外部,且∠β=∠BCA,請直接寫出線段EF、BE、AF的數(shù)量關(guān)系(不需要證明).【分析】(1)①求出∠BEC=∠AFC=90°,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;②求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可;(2)求出∠BEC=∠AFC,∠CBE=∠ACF,根據(jù)AAS證△BCE≌△CAF,推出BE=CF,CE=AF即可.【解答】解:(1)①如圖1,E點在F點的左側(cè),∵BE⊥CD,AF⊥CD,∠ACB=90°,∴∠BEC=∠AFC=90°,∴∠BCE+∠ACF=90°,∠CBE+∠BCE=90°,∴∠CBE=∠ACF,在△BCE和△CAF中,∠EBC=∠ACF∠BEC=∠AFC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,當(dāng)E在F的右側(cè)時,同理可證EF=AF﹣BE,∴EF=|BE﹣AF|;故答案為=,=.②:①中兩個結(jié)論仍然成立;證明:如圖2,∵∠BEC=∠CFA=∠a,∠α+∠ACB=180°,∴∠CBE=∠ACF,在△BCE和△CAF中,∠EBC=∠ACF∠BEC=∠AFC∴△BCE≌△CAF(AAS),∴BE=CF,CE=AF,∴EF=CF﹣CE=BE﹣AF,當(dāng)E在F的右側(cè)時,如圖3,同理可證EF=AF﹣BE,∴EF=|BE﹣AF|;(2)EF=BE+AF.理由是:如圖4,∵∠BEC=∠CFA=∠a,∠a=∠BCA,又∵∠EBC+∠BCE+∠BEC=180°,∠BCE+∠ACF+∠ACB=180°,∴∠EBC+∠BCE=∠BCE+∠ACF,∴∠EBC=∠ACF,在△BEC和△CFA中,∠EBC=∠ACF∠BEC=∠AFC∴△BEC≌△CFA(AAS),∴AF=CE,BE=CF,∵EF=CE+CF,∴EF=BE+AF.【變式4-3】(2022?余杭區(qū)月考)如圖①,點B、C在∠MAN的邊AM、AN上,點E,F(xiàn)在∠MAN內(nèi)部的射線AD上,∠1、∠2分別是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求證:△ABE≌△CAF.應(yīng)用:如圖②,在△ABC中,AB=AC,AB>BC,點D在邊BC上,且CD=2BD,點E,F(xiàn)在線段AD上.∠1=∠2=∠BAC,若△ABC的面積為15,求△ABE與△CDF的面積之和.【分析】(1)由“ASA”可證△ABE≌△CAF;(2)由“ASA”可證△ABE≌△CAF,由全等三角形的性質(zhì)可得S△ABE=S△CAF,由三角形的面積關(guān)系可求解.【解答】證明:(1)∵∠1=∠2=∠BAC,且∠1=∠BAE+∠ABE,∠2=∠FAC+∠FCA,∠BAC=∠BAE+∠FAC,∴∠BAE=∠FCA,∠ABE=∠FAC,且AB=AC,∴△ABE≌△CAF(ASA)(2)∵∠1=∠2=∠BAC,且∠1=∠BAE+∠ABE,∠2=∠FAC+∠FCA,∠BAC=∠BAE+∠FAC,∴∠BAE=∠FCA,∠ABE=∠FAC,且AB=AC,∴△ABE≌△CAF(ASA)∴S△ABE=S△CAF,∵CD=2BD,△ABC的面積為15,∴S△ACD=10=S△ABE+S△CDF.【知識點5倍長中線模型模型】【模型解讀】中線是三角形中的重要線段之一,在利用中線解決幾何問題時,常常采用“倍長中線法”添加輔助線.所謂倍長中線法,就是將三角形的中線延長一倍,以便構(gòu)造出全等三角形,從而運用全等三角形的有關(guān)知識來解決問題的方法.【常見模型】【題型5倍長中線模型】【例5】(2022秋?博興縣期末)如圖,BD是△ABC的中線,AB=6,BC=4,求中線BD的取值范圍.【分析】延長BD到E,使DE=BD,證明兩邊之和大于BE=2BD,兩邊之差小于BE=2BD,證明三角形全等,得到線段相等,等量代換得1<BD<5.【解答】解:如圖所示,延長BD到E,使DE=BD,連接AE,∵BD是△ABC的中線,∴AD=CD,在△ADE和△CDB中,AD=CD∠ADE=∠CDB∴△ADE≌△CDB(SAS),∴AE=BC,在△ABE中,有AB﹣AE<BE<AB+AE,即2<2BD<10,∴1<BD<5.【變式5-1】(2022?涪城區(qū)校級月考)如圖,在△ABC中,D是BC邊的中點,E是AD上一點,BE=AC,BE的延長線交AC于F,求證:∠AEF=∠EAF.【分析】延長AD到G使DG=AD,連接BG,通過△ACD≌△GBD,根據(jù)全等三角形的性質(zhì)得到∠CAD=∠G,AC=BG,等量代換得到BE=BG,由等腰三角形的性質(zhì)得到∠G=∠BEG,即可得到結(jié)論.【解答】解:如圖,延長AD到G使DG=AD,連接BG,在△ACD與△GBD中,CD=BD∠ADC=∠BDG∴△ACD≌△GBD,∴∠CAD=∠G,AC=BG,∵BE=AC,∴BE=BG,∴∠G=∠BEG,∵∠BEG=∠AEF,∴∠AEF=∠EAF.【變式5-2】(2022?浠水縣校級模擬)(1)在△ABC中,AD為△ABC的中線,AB=6,AC=4,則AD的取值范圍是1<AD<5;(2)如圖,在△ABC中,AD為△ABC的中線,點E在中線AD上,且BE=AC,連接并延長BE交AC于點F.求證:AF=FE.【分析】(1)延長AD到E,使DE=AD,連接BE,利用“邊角邊”證明△ACD和△EBD全等,根據(jù)全等三角形對應(yīng)邊相等可得BE=AC,再利用三角形的任意兩邊之和大于第三邊,任意兩邊之差小于第三邊求出AE的取值范圍,然后求解即可.(2)延長AD到點G,使DG=DE,連接CG.證明△BDE≌△CDG(SAS).由全等三角形的性質(zhì)可得出BE=CG,∠BED=∠G.得出∠G=∠GAC,∠AEF=∠GAC,則可得出結(jié)論.【解答】(1)解:如圖,延長AD到E,使DE=AD,連接BE,∵AD為△ABC的中線,∴BD=CD,在△ACD和△EBD中,DE=AD∠ADC=∠EDB∴△ACD≌△EBD(SAS),∴BE=AC,由三角形三邊關(guān)系得,6﹣4<AE<6+4,即2<AE<10,∴1<AD<5,故答案為:1<AD<5.(2)證明,延長AD到點G,使DG=DE,連接CG.∵AD是中線,∴BD=DC.在△BDE和△CDG中,BD=CD∠BDE=∠CDG∴△BDE≌△CDG(SAS).∴BE=CG,∠BED=∠G.∵∠AEF=∠BFD,∴∠AEF=∠G.∵BE=AC,∴AC=CG,∴∠G=∠GAC,∴∠AFE=∠GAC,∴AE=EF.【變式5-3】(2022?丹陽市期中)八年級一班數(shù)學(xué)興趣小組在一次活動中進(jìn)行了探究試驗活動,請你和他們一起活動吧.【探究與發(fā)現(xiàn)】(1)如圖1,AD是△ABC的中線,延長AD至點E,使ED=AD,連接BE,寫出圖中全等的兩個三角形【理解與應(yīng)用】(2)填空:如圖2,EP是△DEF的中線,若EF=5,DE=3,設(shè)EP=x,則x的取值范圍是.(3)已知:如圖3,AD是△ABC的中線,∠BAC=∠ACB,點Q在BC的延長線上,QC=BC,求證:AQ=2AD.【分析】(1)根據(jù)全等三角形的判定即可得到結(jié)論;(2)延長EP至點Q,使PQ=PE,連接FQ,根據(jù)全等三角形的性質(zhì)得到FQ=DE=3,根據(jù)三角形的三邊關(guān)系即可得到結(jié)論;(3)延長AD到M,使MD=AD,連接BM,于是得到AM=2AD由已知條件得到BD=CD,根據(jù)全等三角形的性質(zhì)得到BM=CA,∠M=∠CAD,于是得到∠BAC=∠BAM+∠CAD=∠BAM+∠M,推出△ACQ≌△MBA,根據(jù)全等三角形的性質(zhì)即可得到結(jié)論.【解答】(1)證明:在△ADC與△EDB中,AD=DE∠ADC=∠BDE∴△ADC≌△EDB;故答案為:△ADC≌△EDB;(2)解:如圖2,延長EP至點Q,使PQ=PE,連接FQ,在△PDE與△PQF中,PE=PQ∠EPD=∠QPF∴△PEP≌△QFP,∴FQ=DE=3,在△EFQ中,EF﹣FQ<QE<EF+FQ,即5﹣3<2x<5+3,∴x的取值范圍是1<x<4;故答案為:1<x<4;(3)證明:如圖3,延長AD到M,使MD=AD,連接BM,∴AM=2AD,∵AD是△ABC的中線,∴BD=CD,在△BMD與△CAD中,MD=AD∠BDA=∠CDA∴△BMD≌△CAD,∴BM=CA,∠M=∠CAD,∴∠BAC=∠BAM+∠CAD=∠BAM+∠M,∵∠ACB=∠Q+∠CAQ,AB=BC,∵∠ACQ=180°﹣(∠Q+∠CAQ),∠MBA=180°﹣(∠BAM+∠M),∴∠ACQ=∠MBA,∵QC=BC,∴QC=AB,在△ACQ與△MBA中,BM=CA∠ACQ=∠MBA∴△ACQ≌△MBA,∴AQ=AM=2AD.【知識點6截長補短模型】【模型解讀】截長補短的方法適用于求證線段的和差倍分關(guān)系.截長,指在長線段中截取一段等于已知線段;補短,指將短線段延長,延長部分等于已知線段.該類題目中常出現(xiàn)等腰三角形、角平分線等關(guān)鍵詞句,可以采用截長補短法構(gòu)造全等三角形來完成證明過程【題型6截長補短模型】【例6】(2022秋?西崗區(qū)期末)閱讀下面材料:小明遇到這樣一個問題:如圖1,在△ABC中,AD平分∠BAC,∠ABC=2∠C.求證:AC=AB+BD;小明通過思考發(fā)現(xiàn),可以通過“截長、補短”兩種方法解決問題:方法一:如圖2,在AC上截取AE,使得AE=AB,連接DE,可以得到全等三角形,進(jìn)而解決問題.方法二:如圖3,延長AB到點E,使得BE=BD,連接DE,可以得到等腰三角形,進(jìn)而解決問題.(1)根據(jù)閱讀材料,任選一種方法證明AC=AB+BD,根據(jù)自己的解題經(jīng)驗或參考小明的方法,解決下面的問題;(2)如圖4,四邊形ABCD中,E是BC上一點,EA=ED,∠DCB=2∠B,∠DAE+∠B=90°,探究DC、CE、BE之間的數(shù)量關(guān)系,并證明.【分析】(1)根據(jù)全等三角形的判定求出△ABD≌△AED,根據(jù)全等三角形的性質(zhì)得出BD=ED,∠AED=∠B=2∠C,求出ED=EC,BD=EC,即可得出答案;(2)在EB上截取EF,使得EF=DC,連接AF,求出∠AEB=∠CDE,根據(jù)全等三角形的判定得出△AEF≌△EDC,根據(jù)全等三角形的性質(zhì)得出EC=AF∠AFE=∠C=2∠B,求出∠ABF=∠BAF,推出BF=AF,即可得出答案.【解答】(1)證明:方法一:∵AD平分∠BAC,∴∠BAD=∠CAD,在△BAD和△EAD中AD=AD∠BAD=∠EAD∴△ABD≌△AED(SAS)∴BD=ED,∠AED=∠B=2∠C,∵∠AED=∠C+∠EDC,∴∠EDC=∠C,∴ED=EC,∴BD=EC,∴AC=AB+BD;(2)DC、CE、BE之間的數(shù)量關(guān)系是BE=DC+CE,證明:在EB上截取EF,使得EF=DC,連接AF,∵EA=ED,∴∠EAD=∠EDA,∴2∠DAE=180°﹣∠AED,∵∠DAE+∠B=90°,∴2∠DAE+2∠B=180°,∴∠AED=2∠B=∠C,∵∠BED=∠CDE+∠DAE,∴∠AEB=∠CDE,在△AEF和△EDC中EF=DC∠AEF=∠EDC∴△AEF≌△EDC(SAS),∴EC=AF∠AFE=∠C=2∠B,∵∠AFE=∠B+∠BAF,∴∠ABF=∠BAF,∴BF=AF,∴BF=CE,∴BE=DC+CE.【變式6-1】(2022?蘄春縣期中)已知:如圖,在△ABC中,∠ABC=60°,△ABC的角平分線AD、CE交于點O.求證:AC=AE+CD.【分析】在AC上取AF=AE,連接OF,即可證得△AEO≌△AFO,得∠AOE=∠AOF;再證得∠COF=∠COD,則根據(jù)全等三角形的判定方法ASA即可證△FOC≌△DOC,可得DC=FC,即可得結(jié)論.【解答】證明:在AC上取AF=AE,連接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO與△AFO中,AE=AF∠EAO=∠FAO∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分別平分∠BAC、∠ACB,∴∠ECA+∠DAC=12∠ACB+12∠BAC=12(∠ACB+∠則∠AOC=180°﹣∠ECA﹣∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,則∠COF=60°,∴∠COD=∠COF,∴在△FOC與△DOC中,∠COD=∠COFCO=CO∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【變式6-2】(2022?新?lián)釁^(qū)校級月考)如圖,四邊形ABCD中,∠A=∠B=90°,E是AB的中點,DE平分∠ADC.(1)求證:CE平分∠BCD;(2)求證:AD+BC=CD;(3)若AB=12,CD=13,求S△CDE.【分析】(1)作EM⊥CD垂足為M,根據(jù)角平分線的性質(zhì)定理以及判定定理即可證明.(2)只要證明△DEA≌△DEM得AD=DM,同理可證CB=CM.(3)根據(jù)S△EDC=12?DC?【解答】(1)證明:作EM⊥CD垂足為M,∵ED平分∠ADM,EA⊥AD,EM⊥CD,∴AE=EM,∵AE=EB,∴EM=EB,∵EB⊥BC,EM⊥CD,∴EC平分∠BCD.(2)證明:由(1)可知:AE=EM=EB,在RT△DEA和RT△DEM中,DE=DEAE=EM∴△DEA≌△DEM,∴DA=DM,同理可證:CB=CM∴CD=DM+MC=AD+BC.(3)解:由(1)可知:EM=AE=EB=12∵EM⊥CD,CD=13,∴S△EDC=12?DC?EM【變式6-3】(2022?黃石期末)已知△ABC和△DEF為等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,點E在AB上,點F在射線AC上.(1)如圖1,若∠BAC=60°,點F與點C重合,求證:AF=AE+AD;(2)如圖2,若AD=AB,求證:AF=AE+BC.【分析】(1)由∠BAC=∠EDF=60°,推出△ABC、△DEF為等邊三角形,于是得到∠BCE+∠ACE=∠DCA+∠ECA=60°,推出△BCE≌△ACD(SAS),根據(jù)全等三角形的性質(zhì)得到AD=BE,即可得到結(jié)論;(2)在FA上截取FM=AE,連接DM,推出△AED≌△MFD(SAS),根據(jù)全等三角形的性質(zhì)得到DA=DM=AB=AC,∠ADE=∠MDF,證得∠ADM=∠EDF=∠BAC,推出△ABC≌△DAM(SAS),根據(jù)全等三角形的性質(zhì)得到AM=BC,即可得到結(jié)論.【解答】證明:(1)∵∠BAC=∠EDF=60°,∴△ABC、△DEF為等邊三角形,∴∠BCE+∠ACE=∠DCA+∠ECA=60°,在△BCE和△ACD中BC=AC∴△BCE≌△ACD(SAS),∴AD=BE,∴AE+AD=AE+BE=AB=AF;(2)在FA上截取FM=AE,連接DM,∵∠BAC=∠EDF,∴∠AED=∠MFD,在△AED和△MFD中AE=MF∠AED=∠MFD∴△AED≌△MFD(SAS),∴DA=DM=AB=AC,∠ADE=∠MDF,∴∠ADE+∠EDM=∠MDF+∠EDM,即∠ADM=∠EDF=∠BAC,在△ABC和△DAM中,AB=DA∠BAC=∠ADM∴△ABC≌△DAM(SAS),∴AM=BC,∴AE+BC=FM+AM=AF.即AF=AE+BC.專題12.5全等三角形的證明及計算大題專項訓(xùn)練(30道)【人教版】考卷信息:本套訓(xùn)練卷共30題,題型針對性較高,覆蓋面廣,選題有深度,可深化學(xué)生對全等三角形工具的應(yīng)用及構(gòu)造全等三角形!一.解答題(共30小題)1.(2022?黃州區(qū)校級模擬)如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.(1)求證:△ABC≌△ADE;(2)求∠FAE的度數(shù);(3)求證:CD=2BF+DE.2.(2022秋?忠縣期末)在△ABC中,點D、E分別在AB、AC邊上,設(shè)BE與CD相交于點F.(1)如圖①,設(shè)∠A=60°,BE、CD分別平分∠ABC、∠ACB,證明:DF=EF.(2)如圖②,設(shè)BE⊥AC,CD⊥AB,點G在CD的延長線上,連接AG、AF;若∠G=∠6,BD=CD,證明:GD=DF.3.(2022秋?路北區(qū)期中)如圖,在四邊形ABCD中,AD=BC=4,AB=CD,BD=6,點E從D點出發(fā),以每秒1個單位的速度沿DA向點A勻速移動,點F從點C出發(fā),以每秒3個單位的速度沿C→B→C作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當(dāng)有一個點到達(dá)終點時,其余兩點也隨之停止運動.(1)證明:AD∥BC.(2)在移動過程中,小明發(fā)現(xiàn)當(dāng)點G的運動速度取某個值時,有△DEG與△BFG全等的情況出現(xiàn),請你探究當(dāng)點G的運動速度取哪些值時,會出現(xiàn)△DEG與△BFG全等的情況.4.(2022春?北碚區(qū)校級期末)如圖,已知凸五邊形ABCDE中,EC,EB為其對角線,EA=ED.(1)如圖1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求證:CE平分∠BCD;(2)如圖2,∠A與∠D互補,∠DEA=2∠CEB,若凸五邊形ABCDE面積為30,且CD=23AB=4.求點E到5.(2022秋?宜興市期中)如圖,在△ABC中,已知∠ABC=45°,過點C作CD⊥AB于點D,過點B作BM⊥AC于點M,CD與BM相交于點E,且點E是CD的中點,連接MD,過點D作DN⊥MD,交BM于點N.(1)求證:△DBN≌△DCM;(2)請?zhí)骄烤€段NE、ME、CM之間的數(shù)量關(guān)系,并證明你的結(jié)論.6.(2022秋?淅川縣期末)如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.(1)示例:在圖1中,通過觀察、測量,猜想并寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.答:AB與AP的數(shù)量關(guān)系和位置關(guān)系分別是、.(2)將△EFP沿直線l向左平移到圖2的位置時,EP交AC于點Q,連接AP,BQ.請你觀察、測量,猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系.答:BQ與AP的數(shù)量關(guān)系和位置關(guān)系分別是、.(3)將△EFP沿直線l向左平移到圖3的位置時,EP的延長線交AC的延長線于點Q,連接AP、BQ.你認(rèn)為(2)中所猜想的BQ與AP的數(shù)量關(guān)系和位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.7.(2022秋?渝中區(qū)校級期中)如圖,直線AB交x軸正半軸于點A(a,0),交y軸正半軸于點B(0,b),且a、b滿足a-4+|4﹣b(1)求A、B兩點的坐標(biāo);(2)D為OA的中點,連接BD,過點O作OE⊥BD于F,交AB于E,求證:∠BDO=∠EDA;(3)如圖,P為x軸上A點右側(cè)任意一點,以BP為邊作等腰Rt△PBM,其中PB=PM,直線MA交y軸于點Q,當(dāng)點P在x軸上運動時,線段OQ的長是否發(fā)生變化?若不變,求其值;若變化,求線段OQ的取值范圍.8.(2022春?崇川區(qū)校級期末)如圖1,點A、D在y軸正半軸上,點B、C分別在x軸上,CD平分∠ACB與y軸交于D點,∠CAO=90°﹣∠BDO.(1)求證:AC=BC;(2)在(1)中點C的坐標(biāo)為(4,0),點E為AC上一點,且∠DEA=∠DBO,如圖2,求BC+EC的長;(3)在(1)中,過D作DF⊥AC于F點,點H為FC上一動點,點G為OC上一動點,(如圖3),當(dāng)點H在FC上移動、點G在OC上移動時,始終滿足∠GDH=∠GDO+∠FDH,試判斷FH、GH、OG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.9.(2022秋?莆田期中)如圖1,OA=2,OB=4,以A點為頂點、AB為腰在第三象限作等腰Rt△ABC,(1)求C點的坐標(biāo);(2)如圖2,P為y軸負(fù)半軸上一個動點,當(dāng)P點向y軸負(fù)半軸向下運動時,以P為頂點,PA為腰作等腰Rt△APD,過D作DE⊥x軸于E點,求OP﹣DE的值;(3)如圖3,已知點F坐標(biāo)為(﹣2,﹣2),當(dāng)G在y軸的負(fù)半軸上沿負(fù)方向運動時,作Rt△FGH,始終保持∠GFH=90°,F(xiàn)G與y軸負(fù)半軸交于點G(0,m),F(xiàn)H與x軸正半軸交于點H(n,0),當(dāng)G點在y軸的負(fù)半軸上沿負(fù)方向運動時,以下兩個結(jié)論:①m﹣n為定值;②m+n為定值,其中只有一個結(jié)論是正確的,請找出正確的結(jié)論,并求出其值.10.(2022秋?南崗區(qū)校級月考)在△ABC中,AB=AC,BD⊥AC于點D,BE平分∠ABD,點F在BD上,∠BEF=45°(1)如圖1,求證:BF=CE;(2)如圖2,作EM⊥BE,交BC的延長線于點M,連接AM,交BE的延長線于點N,若∠BAC=30°,請?zhí)骄烤€段EF與MN的數(shù)量關(guān)系,并加以證明.11.(2022春?運城期末)綜合與探究如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延長線交BD于點F.(1)求證:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,請直接寫出∠BFC的度數(shù).(3)過點A作AH⊥BD于點H,求證:EF+DH=HF.12.(2022秋?松桃縣期末)如圖①:△ABC中,AC=BC,延長AC到E,過點E作EF⊥AB交AB的延長線于點F,延長CB到G,過點G作GH⊥AB交AB的延長線于H,且EF=GH.(1)求證:△AEF≌△BGH;(2)如圖②,連接EG與FH相交于點D,若AB=4,求DH的長.13.(2022秋?兩江新區(qū)期末)在Rt△ABC中,∠ABC=90°,點D是CB延長線上一點,點E是線段AB上一點,連接DE.AC=DE,BC=BE.(1)求證:AB=BD;(2)BF平分∠ABC交AC于點F,點G是線段FB延長線上一點,連接DG,點H是線段DG上一點,連接AH交BD于點K,連接KG.當(dāng)KB平分∠AKG時,求證:AK=DG+KG.14.(2022春?濟(jì)南期末)如圖1,△ABE是等腰三角形,AB=AE,∠BAE=45°,過點B作BC⊥AE于點C,在BC上截取CD=CE,連接AD、DE并延長AD交BE于點P;(1)求證:AD=BE;(2)試說明AD平分∠BAE;(3)如圖2,將△CDE繞著點C旋轉(zhuǎn)一定的角度,那么AD與BE的位置關(guān)系是否發(fā)生變化,說明理由.15.(2022春?渭濱區(qū)期末)如圖,在四邊形ABCD中,AD=BC=4,AB=CD,BD=6,點E從D點出發(fā),以每秒1個單位的速度沿DA向點A勻速移動,點F從點C出發(fā),以每秒3個單位的速度沿C→B→C做勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當(dāng)有一個點到達(dá)終點時,其余兩點也隨之停止運動.(1)試證明:AD∥BC.(2)在移動過程中,小明發(fā)現(xiàn)當(dāng)點G的運動速度取某個值時,有△DEG與△BFG全等的情況出現(xiàn),請你探究當(dāng)點G的運動速度取哪些值時,△DEG與△BFG全等.16.(2022秋?寧津縣期末)(1)某學(xué)習(xí)小組在探究三角形全等時,發(fā)現(xiàn)了下面這種典型的基本圖形.如圖1,已知:在△ABC中,∠BAC=90°,AB=AC,直線l經(jīng)過點A,BD⊥直線l,CE⊥直線l,垂足分別為點D、E.證明:DE=BD+CE.(2)組員小劉想,如果三個角不是直角,那結(jié)論是否會成立呢?如圖2,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線l上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.(3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵他們運用這個知識來解決問題:如圖3,過△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AH是BC邊上的高,延長HA交EG于點I,求證:I是EG的中點.17.(2022秋?富縣期中)如圖,在△ABC中,∠ACB=60°,D為△ABC邊AC上一點,BC=CD,點M在BC的延長線上,CE平分∠ACM,且AC=CE.連接BE交AC于點F,G為邊CE上一點,滿足CG=CF,連接DG交BE于點H.(1)求∠DHF的度數(shù);(2)若EB平分∠DEC,則BE平分∠ABC嗎?請說明理由.18.(2022秋?臺安縣月考)如圖所示,BD、CE是△ABC的高,點P在BD的延長線上,CA=BP,點Q在CE上,QC=AB.(1)探究PA與AQ之間的關(guān)系;(2)若把(1)中的△ABC改為鈍角三角形,AC>AB,∠A是鈍角,其他條件不變,上述結(jié)論是否成立?畫出圖形并證明你的結(jié)論.19.(2022春?浦東新區(qū)期末)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)當(dāng)點D在AC上時,如圖①,線段BD,CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請證明你的猜想;(2)將圖①中的△ADE繞點A順時針旋轉(zhuǎn)α(0°<α<90°),如圖②,線段BD,CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.20.(2022春?吉安縣期末)課外興趣小組活動時,老師提出了如下問題:如圖1,△ABC中,若AB=8,AC=6,求BC邊上的中線AD的取值范圍.小明在組內(nèi)經(jīng)過合作交流,得到了如下的解決方法:延長AD到點E,使DE=AD,請根據(jù)小明的方法思考:(1)由已知和作圖能得到△ADC≌△EDB的理由是.A.SSSB.SASC.AASD.HL(2)求得AD的取值范圍是.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7(3)如圖2,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF.求證:AC=BF.21.(2022秋?立山區(qū)期中)如圖,已知△ABC中,AB=AC=9cm,BC=6cm,點D為AB的中點.(1)如果點P在邊BC上以1.5cm/s的速度由點B向點C運動,同時,點Q在邊CA上由點C向點A運動.①若點Q的運動速度與點P的運動速度相等,經(jīng)過1秒后,△BPD與△CQP是否全等,請說明理由;②若點Q的運動速度與點P的運動速度不相等,經(jīng)過t秒后,△BPD與△CQP全等,求此時點Q的運動速度與運動時間t.(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,則經(jīng)過秒后,點P與點Q第一次在△ABC的邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)22.(2022秋?太康縣期末)如圖,已知Rt△ABC≌Rt△ADE,∠ABC=∠ADE=90°,BC與DE相交于點F,連接CD、BE.(1)請你找出圖中其他的全等三角形;(2)試證明CF=EF.23.(2022秋?潮安區(qū)期末)如圖,在四邊形ABCD中,AD∥BC,E為CD的中點,連接AE、BE,BE⊥AE,延長AE交BC的延長線于點F.已知AD=2cm,BC=5cm.(1)求證:FC=AD;(2)求AB的長.24.(2022秋?黃石期末)已知△ABC和△DEF為等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,點E在AB上,點F在射線AC上.(1)如圖1,若∠BAC=60°,點F與點C重合,求證:AF=AE+AD;(2)如圖2,若AD=AB,求證:AF=AE+BC.25.(2022春?濟(jì)南期中)把兩個全等的直角三角板的斜邊重合,組成一個四邊形ACBD以D為頂點作∠MDN,交邊AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,當(dāng)∠MDN繞點D旋轉(zhuǎn)時,AM、MN、BN三條線段之間有何種數(shù)量關(guān)系?證明你的結(jié)論;(2)當(dāng)∠ACD+∠MDN=90°時,AM、MN、BN三條線段之間有何數(shù)量關(guān)系?證明你的結(jié)論;(3)如圖③,在(2)的條件下,若將M、N改在CA、BC的延長線上,完成圖3,其余條件不變,則AM、MN、BN之間有何數(shù)量關(guān)系(直接寫出結(jié)論,不必證明)26.(2022春?城關(guān)區(qū)校級期末)如圖1,OP是∠MON的平分線,請你利用該圖形畫一對以O(shè)P所在直線為對稱軸的全等三角形,并將添加的全等條件標(biāo)注在圖上.請你參考這個作全等三角形的方法,解答下列問題:(1)如圖2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分別是∠BAC和∠BCA的平分線,AD、CE相交于點F,求∠EFA的度數(shù);(2)在(1)的條件下,請判斷FE與FD之間的數(shù)量關(guān)系,并說明理由;(3)如圖3,在△ABC中,如果∠ACB不是直角,而(1)中的其他條件不變,試問在(2)中所得結(jié)論是否仍然成立?若成立,請證明;若不成立,請說明理由.27.(2022秋?長壽區(qū)期末)如圖,△ABC中,AC>AB,D是BA延長線上一點,點E是∠CAD平分線上一點,EB=EC過點E作EF⊥AC于F,EG⊥AD于G.(1)請你在不添加輔助線的情況下找出一對你認(rèn)為全等的三角形,并加以證明;(2)若AB=3,AC=5,求AF的長.28.(2022秋?呼和浩特期中)如圖:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)圖中EC、BF有怎樣的數(shù)量和位置關(guān)系?試證明你的結(jié)論.(2)連接AM,求證:MA平分∠EMF.29.(2022秋?句容市校級月考)把兩個含有45°角的大小不同的直角三角板如圖放置,點D在BC上,連接BE,AD,AD的延長線交BE于點F.說明:AF⊥BE.30.(2022春?雅安期末)如圖,在△ABC中,AC=BC,∠ACB=90°,點D為△ABC內(nèi)一點,且BD=AD.(1)求證:CD⊥AB;(2)∠CAD=15°,E為AD延長線上的一點,且CE=CA.①求證:DE平分∠BDC;②若點M在DE上,且DC=DM,請判斷ME、BD的數(shù)量關(guān)系,并給出證明;③若N為直線AE上一點,且△CEN為等腰三角形,直接寫出∠CNE的度數(shù).專題12.5全等三角形的證明及計算大題專項訓(xùn)練(30道)【人教版】考卷信息:本套訓(xùn)練卷共30題,題型針對性較高,覆蓋面廣,選題有深度,可深化學(xué)生對全等三角形工具的應(yīng)用及構(gòu)造全等三角形!一.解答題(共30小題)1.(2022?黃州區(qū)校級模擬)如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.(1)求證:△ABC≌△ADE;(2)求∠FAE的度數(shù);(3)求證:CD=2BF+DE.【分析】(1)根據(jù)題意和題目中的條件可以找出△ABC≌△ADE的條件;(2)根據(jù)(1)中的結(jié)論和等腰直角三角形的定義可以得到∠FAE的度數(shù);(3)根據(jù)題意和三角形全等的知識,作出合適的輔助線即可證明結(jié)論成立.【解答】證明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,AB=AD∠BAC=∠DAE∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延長BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF=GF∠AFB=∠AFG∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,∠GCA=∠DCA∠CGA=∠CDA∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.2.(2022秋?忠縣期末)在△ABC中,點D、E分別在AB、AC邊上,設(shè)BE與CD相交于點F.(1)如圖①,設(shè)∠A=60°,BE、CD分別平分∠ABC、∠ACB,證明:DF=EF.(2)如圖②,設(shè)BE⊥AC,CD⊥AB,點G在CD的延長線上,連接AG、AF;若∠G=∠6,BD=CD,證明:GD=DF.【分析】(1)在BC上截取BM=BD,連接FM,證明△BFD≌△BFM,△ECF≌△MCF,進(jìn)而可以解決問題;(2)根據(jù)已知條件證明△BDF≌△CDA,進(jìn)而可以解決問題.【解答】證明:(1)如圖,在BC上截取BM=BD,連接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.3.(2022秋?路北區(qū)期中)如圖,在四邊形ABCD中,AD=BC=4,AB=CD,BD=6,點E從D點出發(fā),以每秒1個單位的速度沿DA向點A勻速移動,點F從點C出發(fā),以每秒3個單位的速度沿C→B→C作勻速移動,點G從點B出發(fā)沿BD向點D勻速移動,三個點同時出發(fā),當(dāng)有一個點到達(dá)終點時,其余兩點也隨之停止運動.(1)證明:AD∥BC.(2)在移動過程中,小明發(fā)現(xiàn)當(dāng)點G的運動速度取某個值時,有△DEG與△BFG全等的情況出現(xiàn),請你探究當(dāng)點G的運動速度取哪些值時,會出現(xiàn)△DEG與△BFG全等的情況.【分析】(1)由AD=BC=4,AB=CD,BD為公共邊,所以可證得△ABD≌△CDB,所以可知∠ADB=∠CBD,所以AD∥BC;(2)設(shè)運動時間為t,點G的運動速度為v,根據(jù)全等三角形的性質(zhì)進(jìn)行解答即可.【解答】(1)證明:在△ABD和△CDB中,AD=BCAB=CD∴△ABD≌△CDB(SSS),∴∠ADB=∠CBD,∴AD∥BC;(2)解:設(shè)運動時間為t,點G的運動速度為v,當(dāng)0<t≤4若△DEG≌△BGF,則DE=BFDG=BG∴t=4-3t6-BG=BG∴t=1BG=3∴v=3;若△DEG≌△BGF,則DE=BGDG=BF∴t=BG6-BG=4-3t∴t=-1BG=-1當(dāng)43若△DEG≌△BFG,則DE=BFDG=BG∴t=3t-46-BG=BG∴t=2BG=3∴v=3若△DEG≌△BGF,則DE=BGDG=BF∴t=BG6-BG=3t-4∴t=5∴v=1.綜上,當(dāng)點G的速度為3或1.5或1時.會出現(xiàn)△DEG與△BFG全等的情況.4.(2022春?北碚區(qū)校級期末)如圖,已知凸五邊形ABCDE中,EC,EB為其對角線,EA=ED.(1)如圖1,若∠A=60°,∠CDE=120°,且CD+AB=BC.求證:CE平分∠BCD;(2)如圖2,∠A與∠D互補,∠DEA=2∠CEB,若凸五邊形ABCDE面積為30,且CD=23AB=4.求點E到【分析】(1)延長CD到T,使得DT=BA,連接ET.證明△EAB≌△EDT(SAS),△ECB≌△ECT(SSS),可得結(jié)論.(2)延長CD到Q,使得∠QED=∠AEB,過點E作EH⊥BC于H.證明△AEB≌△DEQ(ASA),△ECB≌△ECQ(SAS),由題意S五邊形ABCDE=S四邊形EBCQ=2S△EBC=30,推出S△EBC=15,再利用三角形面積公式求出EH即可.【解答】(1)證明:延長CD到T,使得DT=BA,連接ET.∵∠CDE=120°,∴∠EDT=180°﹣120°=60°,∵∠A=60°,∴∠A=∠EDT,在△EAB和△EDT中,AE=DE∠A=∠EDT∴△EAB≌△EDT(SAS),∴EB=ET,∴CB=CD+BA=CD+DT=CT,在△ECB和△ECT中,EC=ECEB=ET∴△ECB≌△ECT(SSS),∴∠ECB=∠ECD,∴CE平分∠BCD.(2)解:延長CD到Q,使得∠QED=∠AEB,過點E作EH⊥BC于H.∵∠A+∠CDE=180°,∠CDE+∠EDQ=180°,∴∠A=∠EDQ,在△AEB和△DEQ中,∠AEB=∠DEQEA=ED∴△AEB≌△DEQ(ASA),∴EB=EQ,∵∠AED=2∠BEC,∴∠AEB+∠CED=∠BEC,∴∠CED+∠DEQ=∠BEC,∴∠CEB=∠CEQ,在△CEB和△CEQ中,EB=EQ∠BEC=∠CEQ∴△ECB≌△ECQ(SAS),∵S五邊形ABCDE=S四邊形EBCQ=2S△EBC=30,∴S△EBC=15,∵CD=23∴AB=6,CD=4,∴BC=CD+QD=CD+AB=10,∴12×10×∴EH=3,∴點E到BC的距離為3.5.(2022秋?宜興市期中)如圖,在△ABC中,已知∠ABC=45°,過點C作CD⊥AB于點D,過點B作BM⊥AC于點M,CD與BM相交于點E,且點E是CD的中點,連接MD,過點D作DN⊥MD,交BM于點N.(1)求證:△DBN≌△DCM;(2)請?zhí)骄烤€段NE、ME、CM之間的數(shù)量關(guān)系,并證明你的結(jié)論.【分析】(1)根據(jù)兩角夾邊相等的兩個三角形全等即可證明.(2)結(jié)論:NE﹣ME=CM.作DF⊥MN于點F,由(1)△DBN≌△DCM可得DM=DN,由△DEF≌△CEM,推出ME=EF,CM=DF,由此即可證明.【解答】(1)證明:∵∠ABC=45°,CD⊥AB,∴∠ABC=∠DCB=45°,∴BD=DC,∵∠BDC=∠MDN=90°,∴∠BDN=∠CDM,∵CD⊥AB,BM⊥AC,∴∠ABM=90°﹣∠A=∠ACD,在△DBN和△DCM中,∠BDN=∠CDMBD=DC∴△DBN≌△DCM.(2)結(jié)論:NE﹣ME=CM.證明:由(1)△DBN≌△DCM可得DM=DN.作DF⊥MN于點F,又ND⊥MD,∴DF=FN,在△DEF和△CEM中,∠DEF=∠CEM∠DFE=∠CME∴△DEF≌△CEM,∴ME=EF,CM=DF,∴CM=DF=FN=NE﹣FE=NE﹣ME.6.(2022秋?淅川縣期末)如圖1,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC;△EFP的邊FP也在直線l上,邊EF與邊AC重合,且

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論