某文教用品廠的生產(chǎn)計(jì)劃安排_(tái)第1頁(yè)
某文教用品廠的生產(chǎn)計(jì)劃安排_(tái)第2頁(yè)
某文教用品廠的生產(chǎn)計(jì)劃安排_(tái)第3頁(yè)
某文教用品廠的生產(chǎn)計(jì)劃安排_(tái)第4頁(yè)
某文教用品廠的生產(chǎn)計(jì)劃安排_(tái)第5頁(yè)
已閱讀5頁(yè),還剩18頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

某文教用品廠的生產(chǎn)計(jì)劃安排摘要本次論文寫作的主要目的為設(shè)計(jì)一個(gè)最優(yōu)的生產(chǎn)計(jì)劃問題,對(duì)工廠里用一種原料生產(chǎn)三種商品通過建立線性規(guī)劃模型,從而制定出最優(yōu)生產(chǎn)計(jì)劃的問題。在求解過程中可以得到在不同生產(chǎn)條件以及計(jì)劃安排下產(chǎn)品生產(chǎn)得到的最大利潤(rùn)、最優(yōu)的生產(chǎn)計(jì)劃,以及不同生產(chǎn)計(jì)劃以及條件的靈敏度分析。通過對(duì)問題一合理的假設(shè),將題目中的數(shù)據(jù)進(jìn)行提取,選擇出決定工廠利益的決定條件和約束條件,接著可以利用線性規(guī)劃的模型得出需要的目標(biāo)函數(shù)MAX,通過對(duì)題目的分析,工廠供應(yīng)的原料數(shù)量及工廠員工數(shù)量的約束條件下運(yùn)用LINGO軟件可以得出當(dāng)前生產(chǎn)條件下可獲得的最大收益為4980,和不同產(chǎn)品需要分配的員工數(shù)量。問題二是通過LINGON軟件進(jìn)行靈敏度分析,研究當(dāng)白胚紙的供應(yīng)量變化時(shí),對(duì)于最優(yōu)方案的影響。根據(jù)問題一所給的數(shù)據(jù),得出供應(yīng)量在10000kg到40000kg之間時(shí),最優(yōu)解不變,最大利潤(rùn)不變。接著,對(duì)于問題三,通過合理的假設(shè),根據(jù)題中所給的條件線性規(guī)劃列出目標(biāo)函數(shù)MAX。討論當(dāng)白胚紙供應(yīng)量不變但生產(chǎn)力不足時(shí),招收多少臨時(shí)工使得工廠獲得利益最大化。解得增加臨時(shí)工200人,獲得最大利潤(rùn)。關(guān)鍵詞生產(chǎn)計(jì)劃線性規(guī)劃LINGO最優(yōu)解靈敏度分析

ProductionplanningofastationeryfactoryAbstractThemainpurposeofthispaperistodesignanoptimalproductionplanningproblem.Bybuildingalinearprogrammingmodeltoproducethreekindsofgoodswithonerawmaterialinafactory,theoptimalproductionplanningproblemcanbeformulated.Inthesolutionprocess,wecangetthemaximumprofit,theoptimalproductionplan,andthesensitivityanalysisofdifferentproductionplansandconditionsunderdifferentproductionconditionsandplanningarrangements.Basedonthereasonableassumptionofproblemone,thedataintheproblemisextracted,andthedecisiveconditionsandconstraintsthatdeterminetheinterestsofthefactoryareselected.Thentherequiredobjectivefunctionmaxcanbeobtainedbyusingthelinearprogrammingmodel.Throughtheanalysisoftheproblem,undertheconstraintsofthequantityofrawmaterialssuppliedbythefactoryandthequantityofemployeesinthefactory,thecurrentproductionconditionscanbeobtainedbyusingLINGOsoftwareThemaximumbenefitavailableis4980,andthenumberofemployeestobeallocatedfordifferentproducts.ThesecondproblemistoanalyzethesensitivityofLingOnsoftwaretostudytheinfluenceontheoptimalschemewhenthesupplyofwhiteembryopaperchanges.Accordingtothedatagiveninquestion1,itisconcludedthatwhenthesupplyisbetween10000kgand40000kg,theoptimalsolutionremainsunchangedandthemaximumprofitremainsunchanged.Then,forproblem3,theobjectivefunctionmaxislistedaccordingtothegivenconditionallinearprogrammingthroughreasonableassumptions.Whenthesupplyofwhitepaperisconstantbuttheproductivityisinsufficient,howmanytemporaryworkersarerecruitedtomaximizethebenefitsofthefactoryisdiscussed.Wewillincreasethenumberoftemporaryworkersby200andgetthemaximumprofit.Keywordsoptimum solution LINGO sensitivity analysis wordLinear

programming

for

production

planning

目錄引言 引言運(yùn)籌學(xué)是一門解決一定約束條件下最優(yōu)解的學(xué)科,應(yīng)用現(xiàn)有的科學(xué)技術(shù)知識(shí)與數(shù)學(xué)手段來解決實(shí)際生活中的各種問題,是一門應(yīng)用學(xué)科。目前我國(guó)文教用品的市場(chǎng)潛力非常大,國(guó)民的購(gòu)買力也在不斷增強(qiáng),文教用品行業(yè)有著十分廣闊的消費(fèi)市場(chǎng)以及上升空間。制造文教用品的成本以及可獲得利潤(rùn)將會(huì)在一定程度上影響這個(gè)工廠的走向以及存活。本文是通過建立數(shù)學(xué)模型的方式來解決生活中的實(shí)際問題的,通過對(duì)工廠已有的數(shù)據(jù)進(jìn)行整合并且建立合理的數(shù)學(xué)模型,在建立模型的過程中可以發(fā)現(xiàn)建立的是線性規(guī)劃的模型。通過線性規(guī)劃可以得出如何在有限的條件下合理的利用資源,從而得到最優(yōu)的決策,也為此提供科學(xué)的依據(jù)。通過將建立的模型輸入lingo軟件可以得到當(dāng)前生產(chǎn)條件下可獲得的最大收益和不同產(chǎn)品需要分配的員工數(shù)量。通過靈敏度分析研究約束條件的變化對(duì)于最優(yōu)解的影響等。1.問題概述1.1基本情況 假設(shè)在某個(gè)文教用品的生產(chǎn)廠里,每天都在生產(chǎn)原稿紙,日記本以及練習(xí)本這幾種學(xué)生日常使用的產(chǎn)品,所用的原材料為白坯紙。這個(gè)生產(chǎn)廠目前擁有員工數(shù)目為100人,原材料白胚紙每天所提供的具體數(shù)值為30000kg,假設(shè)將這三種產(chǎn)品分開,獨(dú)自進(jìn)行生產(chǎn),任意員工每天可以獨(dú)自生產(chǎn)的三種產(chǎn)品的數(shù)目都為30。信息中給出了每種產(chǎn)品所消耗的原材料白胚紙的數(shù)量:103kg的白胚紙可以生產(chǎn)一捆原稿紙;403kg的白胚紙可以生產(chǎn)一打日記本;803kg的白胚紙可以生產(chǎn)一箱練習(xí)本。生產(chǎn)這三種產(chǎn)品所獲得的利潤(rùn)也是不相同的:每生產(chǎn)一捆原稿紙獲利1元,每生產(chǎn)一打日記本獲利2元,每生產(chǎn)一箱練習(xí)本獲利3元。1.2相關(guān)信息經(jīng)過對(duì)于題目的理解,可得到的信息如表1所示:工種人數(shù)工作每天使用材料利潤(rùn)原材料總量生產(chǎn)原稿紙未知10030*原稿紙人數(shù)30000生產(chǎn)日記本未知40060*日記本人數(shù)生產(chǎn)練習(xí)本未知80090*練習(xí)本人數(shù)總數(shù)1001300未知表11.3問題的提出問題一:討論在當(dāng)前工廠的生產(chǎn)設(shè)施條件下,可以使利潤(rùn)最大化的最優(yōu)生產(chǎn)計(jì)劃。問題二:如果白坯紙的供應(yīng)發(fā)生變化,討論最優(yōu)生產(chǎn)計(jì)劃會(huì)因此產(chǎn)生哪些變化。問題三:假設(shè)每天的原材料白坯紙?zhí)峁┑牧坎话l(fā)生改變,當(dāng)出現(xiàn)工人的人數(shù)不足以支撐生產(chǎn)時(shí),比較好的解決方案就是在勞動(dòng)力市場(chǎng)上招收臨時(shí)工,而他們的費(fèi)用消耗為每人每天15元,討論有沒有必要在市場(chǎng)招收以及招收多少可使利潤(rùn)最大化?2.符號(hào)設(shè)置x1x2x3x4x5x6W:生產(chǎn)獲得的總利潤(rùn)3.建立模型及求解3.1問題一3.1.1問題的假設(shè)以及分析通過對(duì)問題的理解,可以做出以下的假設(shè),首先工人可以穩(wěn)定的去生產(chǎn)用品,沒有請(qǐng)假等情況發(fā)生,每份原材料消耗是固定的,生產(chǎn)的利潤(rùn)是固定的,以及生產(chǎn)機(jī)器損耗不計(jì),維持生產(chǎn)的電費(fèi)等其他費(fèi)用不計(jì)入成本。想要得出最優(yōu)生產(chǎn)計(jì)劃,變相的考慮就是怎樣分配這100名員工到三個(gè)崗位能使工廠的效益最大化,及工廠所獲利潤(rùn)最大。由此我們可以將每個(gè)崗位的員工人數(shù)設(shè)為不同的變量,分別將他們?cè)O(shè)為了x1、x3.1.2模型的建立根據(jù)問題的分析以及假設(shè),建立的模型如下:由題意可以知道工廠的利潤(rùn)(W)=原稿紙的利潤(rùn)+日記本的利潤(rùn)+練習(xí)本的利潤(rùn)所以由題意得出目標(biāo)函數(shù):

W=30化簡(jiǎn)可得到:W=30再由題意可知原料供應(yīng)限制為:10化簡(jiǎn)可得到:x由題意可知生產(chǎn)能力的約束:x再由于現(xiàn)實(shí)實(shí)際情況:x1≥0、x2≥0綜上可得數(shù)學(xué)模型:maxW=303.1.3模型的求解結(jié)果將模型代碼輸入lingo我們可以得到表2數(shù)據(jù)。生產(chǎn)原稿紙人數(shù)生產(chǎn)日記本人數(shù)生產(chǎn)練習(xí)本人數(shù)總計(jì)人數(shù)34660100利潤(rùn)1020396004980表2由此可以得出這個(gè)線性規(guī)劃的最優(yōu)解為x1=34,x3.1.4最終結(jié)果的分析通過lingo得出的結(jié)果,在保持當(dāng)前最優(yōu)基(矩陣)不變的條件下,包含了約束右端的變化區(qū)間以及決策變量所對(duì)應(yīng)的系數(shù)得變化的區(qū)間這兩個(gè)目標(biāo)函數(shù)中的部分。計(jì)算得知,當(dāng)前在目標(biāo)函數(shù)中決策變量x1的系數(shù)是30,在已知的條件范圍內(nèi),允許增加7.5和減少15。也就是說,假設(shè)在其他條件均不發(fā)生改變的情況下,當(dāng)x1的系數(shù)變化在區(qū)間[15,37.5]范圍內(nèi)移動(dòng)時(shí),當(dāng)前最優(yōu)基矩陣保持不變。因?yàn)楫?dāng)前的約束條件不發(fā)生改變,所以通過知道最優(yōu)基矩陣不變,則最優(yōu)解不變。通過多次實(shí)驗(yàn)可得知如果改變目標(biāo)函數(shù)的系數(shù),最優(yōu)值也會(huì)隨之產(chǎn)生變化。在目標(biāo)函數(shù)中決策變量x2所對(duì)應(yīng)的系數(shù)是60,在當(dāng)前題目的條件允許增加60和減少4.29,當(dāng)其他條件不變的情況下,該系數(shù)區(qū)間在[55.71,120]上變化時(shí),當(dāng)前最優(yōu)基矩陣維持現(xiàn)狀。在當(dāng)前目標(biāo)函數(shù)中90是決策變量x3對(duì)應(yīng)的系數(shù),在已知的條件范圍內(nèi),可以增大10和減少∞,當(dāng)其他條件不變的情況下該系數(shù)區(qū)間在[0通過lingo的結(jié)果我們還可以得出表3數(shù)據(jù)。約束條件約束值允許的增量允許的減量松弛變量影子價(jià)格白胚紙數(shù)量300100200010工人數(shù)量10020025020表3由此表我們可以對(duì)白胚紙的數(shù)量做更深一步的研究。影子價(jià)格在生產(chǎn)中的作用存在限制性。當(dāng)?shù)谝粋€(gè)約束值每增加1時(shí),工廠的利潤(rùn)將會(huì)增加10,也就是當(dāng)白胚紙作為原料時(shí),原料總量每增加100千克時(shí),工廠的利潤(rùn)就會(huì)增加10元。當(dāng)?shù)诙€(gè)約束條件的值每增加1時(shí),工廠的利潤(rùn)就會(huì)增加20,當(dāng)工廠的工人超過100時(shí),每增加一個(gè)人,工廠的利潤(rùn)就會(huì)增加20元。Lingo給出了影子價(jià)格約束條件右端的限制范圍,即白胚紙的供應(yīng)最多增加10000千克,工廠員工數(shù)量最多增加200人。靈敏度分析給出的結(jié)果是最優(yōu)基保持不變的充分條件,但是并不是必要條件。當(dāng)約束條件不在分析的結(jié)果的范圍內(nèi),最優(yōu)基是否會(huì)發(fā)生改變以及影子價(jià)格是否還存在意義并不能從靈敏度分析報(bào)告中直接得出。3.2問題二3.2.1問題的假設(shè)以及分析通過問題我們可以得知研究的是白胚紙的供應(yīng)關(guān)系對(duì)于最優(yōu)方案的影響,此時(shí)確定的是工人的數(shù)量,工人的生產(chǎn)效率是穩(wěn)定的,工廠的利潤(rùn)只包含了工人帶給工廠的利潤(rùn),原材料的正常損耗不計(jì)入原材料以及利潤(rùn)中。如果工廠白胚紙的供應(yīng)量還是30000千克,我們需要建立數(shù)學(xué)模型,由于工人的工作效率是固定的,我們可以將其理解為已知常數(shù),我們通過假設(shè)不同崗位工人數(shù)量為決策中的變量,對(duì)其運(yùn)行的結(jié)果研究并使用靈敏度分析,最終得出各種數(shù)據(jù)在什么樣的范圍之內(nèi)發(fā)生變化,它的最優(yōu)解不變。3.2.2模型的建立由題意可以知道工廠的利潤(rùn)(W)=原稿紙的利潤(rùn)+日記本的利潤(rùn)+練習(xí)本的利潤(rùn)所以由題意得出目標(biāo)函數(shù):

W=30化簡(jiǎn)可得到:W=30再由題意可知原料供應(yīng)限制為:10化簡(jiǎn)可得到:100由題意可知生產(chǎn)能力的約束:x再由于現(xiàn)實(shí)實(shí)際情況:x1≥0、x2≥0綜上可得數(shù)學(xué)模型:maxW=303.2.3模型的求解結(jié)果此時(shí)我們可以得到的最優(yōu)結(jié)果為x1=34,約束條件約束值允許的增量允許的減量白胚紙數(shù)量300001000020000工人數(shù)量10020025表4分析表格中的具體數(shù)據(jù),我們發(fā)現(xiàn),在[10000,40000]這個(gè)區(qū)間內(nèi),當(dāng)右端約束條件30000在范圍內(nèi)變化時(shí),創(chuàng)建模型的最優(yōu)基不變。即當(dāng)白胚紙的供應(yīng)在10000千克至40000千克時(shí),當(dāng)前最優(yōu)基矩陣保持不變。但是通過改變右端的約束條件,所得到的最優(yōu)解以及最優(yōu)值會(huì)發(fā)生變化。3.2.4結(jié)果分析通過白胚紙供應(yīng)的允許區(qū)間內(nèi),我們可以通過lingo來分析白胚紙的供應(yīng)區(qū)間在[10000,40000]時(shí),不同崗位的工人的變化,以及利潤(rùn)的變化。即得到的最優(yōu)解以及最優(yōu)值的變化趨勢(shì)時(shí)什么樣的。將約束條件白胚紙的數(shù)量在[10000,40000]區(qū)間內(nèi)分別取值輸入lingo,可以得出表5數(shù)據(jù)。工種\約束條件10000千克20000千克25000千克30000千克35000千克40000千克原稿紙工人數(shù)量100665034170日記本工人數(shù)量034506683100練習(xí)本工人數(shù)量000000利潤(rùn)300040004500498055006000表5通過這張表顯然可以得出當(dāng)其他條件不變時(shí)且白胚紙供應(yīng)量再[10000,40000]這個(gè)區(qū)間內(nèi)時(shí),當(dāng)白胚紙的供應(yīng)發(fā)生改變,所得的最優(yōu)解會(huì)發(fā)生變化,最優(yōu)值會(huì)隨著白胚紙數(shù)量的增加而遞增,同時(shí),當(dāng)白胚紙的數(shù)量增加時(shí),很顯然的看出作為原稿紙工作的人數(shù)是逐漸遞減的,作為日記本工作的人數(shù)是逐漸遞增的,但是練習(xí)本工作人數(shù)一直是0。由此可以得出,當(dāng)白胚紙的供應(yīng)再[10000,40000]區(qū)間內(nèi)時(shí),白胚紙供應(yīng)越多則工廠的利潤(rùn)越高、原稿紙工作人數(shù)越少、日記本工作人數(shù)越多。并且建議工廠取消練習(xí)本的制造,因?yàn)榘着呒堅(jiān)谶@個(gè)供應(yīng)區(qū)間內(nèi)想要獲得最大利潤(rùn),不需要安排工人去在制造練習(xí)本。如果白胚紙的供應(yīng)量不在這個(gè)區(qū)間范圍內(nèi)時(shí),最優(yōu)方案又會(huì)發(fā)生什么變化呢?我將白胚紙供應(yīng)的約束條件進(jìn)行修改,將供應(yīng)量超出我們所限制的一個(gè)區(qū)間我們會(huì)得到表6數(shù)據(jù)。工種\約束條件5000千克8000千克50000千克55000千克60000千克70000千克原稿紙工人數(shù)量50800000日記本工人數(shù)量0075635025練習(xí)本工人數(shù)量0025375075利潤(rùn)150024006570712575008250表6由此表我們可以得出,當(dāng)白胚紙供應(yīng)區(qū)間在[0,10000]時(shí),想要工廠獲得最大利潤(rùn),那么最優(yōu)方案就是只生產(chǎn)原稿紙,而且隨著白胚紙供應(yīng)的遞減生產(chǎn)原稿紙的人數(shù)也會(huì)逐漸遞減,白胚紙的供應(yīng)越少,利潤(rùn)也相對(duì)越少。當(dāng)白胚紙供應(yīng)區(qū)間在[40000,+∞)時(shí),工廠想要獲得最大利潤(rùn),那么最優(yōu)方案中將不會(huì)生產(chǎn)原稿紙,并且隨著白胚紙的供應(yīng)不斷增加,生產(chǎn)練習(xí)本的人數(shù)也在不斷增加;相對(duì)應(yīng)的生產(chǎn)日記本的人數(shù)也會(huì)減少。從整體上看,只要白胚紙的供應(yīng)不斷增加,工廠所能獲得的最大利潤(rùn)也會(huì)不斷增加。3.3問題三3.3.1問題的假設(shè)以及分析以上兩題主要需要考慮的時(shí)白胚紙的供應(yīng)關(guān)系發(fā)生變化對(duì)于最優(yōu)方案的影響以及在約束條件下的最優(yōu)解的問題。本題主要開始研究在現(xiàn)有情況下招收零時(shí)工,此時(shí)要確定的是目前工廠里的100名員工是確定的,100依舊作為約束條件,招零時(shí)工的人數(shù)不納入工廠員工之內(nèi)。工人工作效率是一定的,生產(chǎn)發(fā)生的損耗不計(jì)入利潤(rùn)當(dāng)中,此時(shí)我們可以建立新的模型進(jìn)行求解。3.3.2模型的建立由題意可以知道工廠的利潤(rùn)(W)=原稿紙的利潤(rùn)+日記本的利潤(rùn)+練習(xí)本的利潤(rùn)-雇用臨時(shí)工的成本。所以由題意得出目標(biāo)函數(shù):

W=30化簡(jiǎn)可得到:W=30再由題意可知原料供應(yīng)限制為:10由化簡(jiǎn)可得到:100由題意可知生產(chǎn)能力的約束:x需要雇傭的臨時(shí)工人數(shù)為:x再由于現(xiàn)實(shí)實(shí)際情況:x1≥0、x2≥0、x3≥0、x4綜上可得數(shù)學(xué)模型:maxW=303.3.3模型的求解結(jié)果通過lingo可以得到的結(jié)果為x1=100,x2=0,x3=0,3.3.4結(jié)果分析當(dāng)開始招收零時(shí)工時(shí),模型的松弛變量以及影子價(jià)格以及約束值可增減的量發(fā)生了變化,通過lingo我們可以得到表7數(shù)據(jù)約束條件約束值允許的增量允許的減量松弛變量影子價(jià)格白胚紙供應(yīng)30000∞2000000.15工人數(shù)量100200100015表7由此表我們可以發(fā)現(xiàn)白胚紙的供應(yīng)區(qū)間發(fā)生了改變,當(dāng)開始招收零時(shí)工時(shí),在確保最優(yōu)基不變時(shí)白胚紙的供應(yīng)區(qū)間變成了[1000,∞),我們可以在此區(qū)間內(nèi)來觀察最優(yōu)生產(chǎn)計(jì)劃會(huì)發(fā)生什么樣的變化,通過改變白胚紙的供應(yīng)量,我們可以得到表8數(shù)據(jù)工種\約束條件10000千克20000千克30000千克40000千克50000千克60000千克原稿紙員工的數(shù)量100100100100100100日記本員工的數(shù)量000000練習(xí)本員工的數(shù)量000000原稿紙零時(shí)工數(shù)量0100200300400500日記本零時(shí)工數(shù)量000000練習(xí)本零時(shí)工數(shù)量000000總利潤(rùn)3000450060007500900010500表8由此表可以得出,當(dāng)白胚紙供應(yīng)量發(fā)生變化,且白胚紙供應(yīng)越多,原稿紙工作崗位所要招收的零時(shí)工數(shù)量也會(huì)越多,通過lingo得到的影子價(jià)格可以得出,當(dāng)白胚紙的供應(yīng)每增加1千克時(shí),總利潤(rùn)會(huì)上漲0.15,當(dāng)工廠員工數(shù)量每增加一人時(shí),總利潤(rùn)會(huì)上漲15。通過以上分析還可以得出,如果工廠開始招收零時(shí)工時(shí),在白胚紙供應(yīng)一定的條件下,零時(shí)工去制造原稿紙將會(huì)使工廠的利潤(rùn)最大化。3.4問題的補(bǔ)充3.4.1補(bǔ)充的問題文教用品廠調(diào)查人員根據(jù)市場(chǎng)供求關(guān)系,向公司提交利潤(rùn)修改計(jì)劃如下:方案A三種不同產(chǎn)品在每一個(gè)單位內(nèi)可獲得的利潤(rùn)分別為1元,2元,2元。方案B三種不同產(chǎn)品在每一個(gè)單位內(nèi)可獲得的利潤(rùn)分別為:1元,3元,2元。方案C三種不同產(chǎn)品在每一個(gè)單位內(nèi)可獲得的利潤(rùn)分別為:2元,3元,2元。公司應(yīng)采納哪套方案,獲利最高?3.4.2問題的分析在已知的約束條件內(nèi),提出了這個(gè)問題,想要討論不同產(chǎn)品的利潤(rùn)發(fā)生略微改變之后,最優(yōu)生產(chǎn)計(jì)劃是否會(huì)發(fā)生改變,得到的最優(yōu)解是否有改變,如果改變了,與原題的數(shù)學(xué)存在什么樣的差異。分別將四個(gè)方案分別把原稿紙,日記本,練習(xí)本的利潤(rùn)改成了1,2,2;1,3,2;2,3,(元)此時(shí)白胚紙的總量還是為30000千克,工廠的員工還是100人。在忽略生產(chǎn)效率的改變以及生產(chǎn)可能發(fā)生損耗的情況下,對(duì)不同的方案都建立模型進(jìn)行分析。3.4.3模型的建立由題意可以知道工廠的利潤(rùn)(W)=原稿紙的利潤(rùn)+日記本的利潤(rùn)+練習(xí)本的利潤(rùn)由方案A得出目標(biāo)函數(shù):

化簡(jiǎn)可得到:W=30建立的數(shù)學(xué)模型為:max由方案B得出目標(biāo)函數(shù):

W=30化簡(jiǎn)可得到:W=30建立的數(shù)學(xué)模型為:max由方案C得出目標(biāo)函數(shù):

W=2×30化簡(jiǎn)可得到:W=60建立的數(shù)學(xué)模型為:max3.4.4模型的求解結(jié)果根據(jù)列出的數(shù)學(xué)模型,利用LINGO編程求解,分別求得各方案的總利潤(rùn)。采用A方案時(shí),工廠利潤(rùn)最大W=4980;采用B方案時(shí),工廠利潤(rùn)最大W=6990;采用C方案時(shí),工廠利潤(rùn)最大W=7980;三種方案對(duì)比,公司應(yīng)采納C方案,獲利最高W=7980。3.4.5結(jié)果的分析通過三個(gè)建立的模型可以發(fā)現(xiàn),三個(gè)模型的約束體條件以及決策變量都是一樣的,發(fā)生變化的只有價(jià)值系數(shù),對(duì)此我們可以通過不同的價(jià)值系數(shù)會(huì)對(duì)最優(yōu)方案以及最優(yōu)解又哪些影響。首先使用lingo對(duì)方案A進(jìn)行靈敏度分析可以得到表9的數(shù)據(jù)。約束條件約束值允許的增量允許的減量松弛變量影子價(jià)格白胚紙供應(yīng)數(shù)量30000千克10000千克20000千克00.1生產(chǎn)原稿紙的人數(shù)3410020025020生產(chǎn)日記本的人數(shù)64生產(chǎn)練習(xí)本的人數(shù)0表9使用lingo對(duì)方案B進(jìn)行靈敏度分析可以得到表10的數(shù)據(jù)。約束條件約束值允許的增量允許的減量松弛變量影子價(jià)格白胚紙供應(yīng)數(shù)量30000千克10000千克20000千克00.2生產(chǎn)原稿紙的人數(shù)3410020025010生產(chǎn)日記本的人數(shù)64生產(chǎn)練習(xí)本的人數(shù)0表10使用lingo對(duì)方案C進(jìn)行靈敏度分析可以得到表11的數(shù)據(jù)。約束條件約束值允許的增量允許的減量松弛變量影子價(jià)格白胚紙供應(yīng)數(shù)量30000千克10000千克20000千克00.2生產(chǎn)原稿紙的人數(shù)3410020025050生產(chǎn)日記本的人數(shù)64生產(chǎn)練習(xí)本的人數(shù)0表11通過表9、表10、表11可以發(fā)現(xiàn),當(dāng)價(jià)值系數(shù)發(fā)現(xiàn)變動(dòng)時(shí),三個(gè)方案的最優(yōu)生產(chǎn)計(jì)劃并沒有發(fā)生改變,但是影子價(jià)格和最優(yōu)解都發(fā)生了變化。原來數(shù)據(jù)的白胚紙供應(yīng)數(shù)量的影子價(jià)格為0.1,工人數(shù)量的影子價(jià)格為20,當(dāng)時(shí)的最優(yōu)解w=4980。方案A中白胚紙供應(yīng)數(shù)量的影子價(jià)格為0.1,工人數(shù)量的影子價(jià)格為20,最優(yōu)解w=4980。方案B中白胚紙供應(yīng)數(shù)量的影子價(jià)格為0.2,工人數(shù)量的影子價(jià)格為10,最優(yōu)解w=6990。方案C中白胚紙供應(yīng)數(shù)量的影子價(jià)格為0.2,工人數(shù)量的影子價(jià)格為50,最優(yōu)解w=7980。由此可以發(fā)現(xiàn)方案A和原題的影子價(jià)格相同,此時(shí)所獲得的最優(yōu)解也是相同的,方案4.模型的拓展本題建立的初始的模型為max此時(shí)模型的約束條件為300與100且工人數(shù)量都大于等于0,在題目中相對(duì)應(yīng)的約束條件為30000千克的白胚紙和100名工人。由這個(gè)模型可以得出在此條件下的最優(yōu)生產(chǎn)計(jì)劃。如果隨著文教用品廠的生產(chǎn)規(guī)模不斷擴(kuò)大,生產(chǎn)物品的種類也會(huì)隨之增加,不單單局限于生產(chǎn)原料是白胚紙了,還有可能會(huì)衍生出其他的產(chǎn)業(yè),此時(shí)這個(gè)數(shù)學(xué)模型也依舊適用。假設(shè)文教用品廠增加了新的產(chǎn)業(yè)為鉛筆制造業(yè),為此工廠擴(kuò)招了m人專門生產(chǎn),此時(shí)的木材原料為n千克,鉛筆也分為了日常使用的鉛筆以及考試專用的2B鉛筆這兩種種類,生產(chǎn)普通鉛筆的工人每天使用50千克的木材,生產(chǎn)2 B鉛筆的工人每天使用35千克木材,每個(gè)生產(chǎn)普通鉛筆工人帶來的利潤(rùn)為d,每個(gè)生產(chǎn)2B鉛筆的工人帶來的利潤(rùn)為e。類似于這種情況,我們的模型依舊適用。我們可以將此時(shí)的模型做出簡(jiǎn)單的修改max50xmx我們使用lingo依舊可以得出此時(shí)的最優(yōu)生產(chǎn)計(jì)劃。由此可以得出此模型不只是局限于這一個(gè)問題,在很多一般性問題中也可以使用,只需修改決策變量的值,決策變量的數(shù)量,以及實(shí)際問題中約束條件使其符合實(shí)際問題的需求,便可以分析得出使利潤(rùn)在大話的最優(yōu)生產(chǎn)計(jì)劃。結(jié)論本次畢業(yè)論文討論的是文教用品廠在現(xiàn)有生產(chǎn)條件下的最優(yōu)生產(chǎn)計(jì)劃問題。通過討論生產(chǎn)計(jì)劃從而使工廠得到最大利潤(rùn)。由于本次所知道的數(shù)據(jù)有限,模型構(gòu)建的相對(duì)的簡(jiǎn)單,只能對(duì)部分現(xiàn)有的變量做出分析。本次論文主要使用的方法使線性規(guī)劃的靈敏度分析,將題目中的數(shù)據(jù)先進(jìn)行提取,可以發(fā)現(xiàn)有很多的變量,我先將其設(shè)為決策變量,之后從數(shù)據(jù)中提取價(jià)值系數(shù)、消耗系數(shù)以及資源限制系數(shù),通過對(duì)利潤(rùn)的理解可以得到一個(gè)目標(biāo)方程以及多個(gè)約束條件,從而完成了這個(gè)數(shù)學(xué)模型的建立。之后將這些模型以及數(shù)據(jù)輸入至lingo軟件中,可以得出模型背后的數(shù)據(jù)。使用lingo很容易就可以得出最優(yōu)的生產(chǎn)計(jì)劃以及對(duì)應(yīng)的各種搭配的最優(yōu)解,通過對(duì)最有生產(chǎn)計(jì)劃的靈敏度分析可以發(fā)現(xiàn),部分因子在一定的區(qū)間內(nèi)變化,最優(yōu)解以及最優(yōu)生產(chǎn)計(jì)劃都是有一定規(guī)律的,本題中,當(dāng)白胚紙的供應(yīng)量在[10000,40000]之前時(shí),如果白胚紙的供應(yīng)量越大,安排生產(chǎn)原稿紙的工人數(shù)量減少,同時(shí)生產(chǎn)日記本的工人數(shù)量增加,此時(shí)的最大利潤(rùn)也會(huì)隨之增加,由此也可以推斷出白胚紙的供應(yīng)在什么區(qū)間內(nèi),哪些產(chǎn)業(yè)不許要生產(chǎn)也可以很快地得出。最后通過討論在一定條件下,價(jià)值系數(shù)的改變會(huì)對(duì)結(jié)果發(fā)生什么樣的影響。同樣是通過lingo得出了大量數(shù)據(jù)進(jìn)行整合,發(fā)現(xiàn)了影子價(jià)格對(duì)于結(jié)果的影響。我所構(gòu)建的模型有優(yōu)點(diǎn)也有缺點(diǎn),優(yōu)點(diǎn)是選擇了合適的方法對(duì)題目進(jìn)行建立簡(jiǎn)單的數(shù)學(xué)模型,對(duì)生產(chǎn)過程也做出了合理的假設(shè)以及規(guī)劃,我在充分考慮運(yùn)料供應(yīng)限制、生產(chǎn)能力的約束,通過題目中已知的數(shù)據(jù)建立出了以生產(chǎn)所獲得利潤(rùn)最大為目標(biāo)函數(shù),通過lingo求出了當(dāng)前情況下的最優(yōu)方案。但是也有一定的缺點(diǎn),因?yàn)樯婕暗饺藬?shù)問題,所以本體為整數(shù)規(guī)劃,lingo軟件無法對(duì)整數(shù)規(guī)劃進(jìn)行靈敏度分析,所以我只能通過去除整數(shù)的限制進(jìn)行靈敏度分析,其次對(duì)題目的部分?jǐn)?shù)據(jù)分析不透徹,比如工人之間的分工沒有在模型中體現(xiàn)的很準(zhǔn)確,對(duì)于實(shí)際情況來說,還有很多因素沒有考慮,比如工人的出勤情況,各條生產(chǎn)線的效率,生產(chǎn)機(jī)器的損耗,生產(chǎn)產(chǎn)品是否都符合標(biāo)準(zhǔn),是否有材料的損耗等。

參考文獻(xiàn):[1]寧宣熙.運(yùn)籌學(xué)實(shí)用教程[M].北京:科學(xué)出版社,2002:42-85.[2]周凱,鄔學(xué)軍,宋軍全.數(shù)學(xué)建模[M].杭州:浙江大學(xué)出版社,2017:21-61[3]袁新生,邵大宏,郁時(shí)煉[M].科學(xué)出版社,2007:21-43.[4]吳祁宗,候福均.運(yùn)籌學(xué)與最優(yōu)化方法[M].北京:機(jī)械工業(yè)出版社,2013:40-76.[5]朱求長(zhǎng).運(yùn)籌學(xué)及其應(yīng)用(第三版)[M].武漢:武漢大學(xué)出版社,2004:189.[6]朱求長(zhǎng).運(yùn)籌學(xué)及其應(yīng)用(第三版)[M].武漢:武漢大學(xué)出版社,2012.211.[7]朱映武.運(yùn)籌學(xué)[M].西安:西安交通大學(xué)出版社,1994:63.68.[8]李佐鋒.數(shù)學(xué)建模[M].北京:中央廣播電視大學(xué)出版社,2003:150.[9]單鋒,朱麗梅,田賀民.數(shù)學(xué)建模[M].北京:國(guó)防工業(yè)出版社,2016:56-67,238-244.[10]徐茂良.數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)[M].北京:國(guó)防工業(yè)出版社,2015:57.[11]康躍.運(yùn)籌學(xué)[M].北京:首都經(jīng)濟(jì)貿(mào)易出版社,2005:51-63.[12]林齊寧.運(yùn)籌學(xué)[M].北京:北京郵電大學(xué)出版社,2003:78.[13]鮑祥霖.運(yùn)籌學(xué)[M].北京:機(jī)械工業(yè)出版社,2005:34[14]吳祁宗.運(yùn)籌學(xué)[M].北京:機(jī)械工業(yè)出版社,2003:59-85.

Word常用快捷鍵由于Word有定義快捷鍵的功能,在重新指定快捷鍵后,不能再使用該組合完成以前的操作。例如,按快捷鍵Ctrl+B可將選定文本改為加粗格式,如果將Ctrl+B重新指定給一個(gè)新的命令或其他命令,則不能通過按Ctrl+B為文本應(yīng)用加粗格式,除非將快捷鍵指定恢復(fù)到初始設(shè)置。下面的列表使用說明如下:(1)表中出現(xiàn)的(F)、(E)、(V)、(I)、(O)、(T)、(A)、(W):分別代表文件、編輯、視圖、插入、格式、工具、表格和窗口菜單。(2)(切換方式):表示重復(fù)按該鍵還原操作。(3)Num?:表示小鍵盤上的數(shù)字鍵。(4)Ctrl+A:表示Ctrl鍵和A鍵的組合,其余類推。A.1常規(guī)快捷鍵Ctrl+A(E)選取整篇文檔(Ctrl+Num5)Ctrl+R可使段落右對(duì)齊Ctrl+B(E)加粗文本(Ctrl+Shift+B)Ctrl+](O)按磅值增加所選定內(nèi)容的字號(hào)Ctrl+C(E)復(fù)制所選內(nèi)容Ctrl+[(O)按磅值縮小所選定內(nèi)容的字號(hào)Ctrl+D(O)修改選定字符格式Ctrl+=(O)將選定內(nèi)容設(shè)為下標(biāo)(切換方式)Ctrl+E(O)段落居中Ctrl++(O)將選定內(nèi)容設(shè)為上標(biāo)(切換方式)Ctrl+H(E)查找并修改指定文字或格式Ctrl+*(V)顯示/隱藏所有非打印字符Ctrl+I(xiàn)(O)傾斜所選文字(切換方式)Ctrl+Tab(A)在單元格中插入制表符Ctrl+M(F)調(diào)整整段縮進(jìn)Ctrl+L(O)段落左對(duì)齊Ctrl+N(F)創(chuàng)建新文檔或模板Ctrl+Enter(O)在插入點(diǎn)插入一個(gè)分頁(yè)符Ctrl+O(F)打開已有的文檔或模板Ctrl+Up(E)將插入點(diǎn)上移一個(gè)段落Ctrl+P(F)打印文檔(=Ctrl+Shift+F12)Ctrl+Down(E)將插入點(diǎn)下移一個(gè)段落Ctrl+Q(O)刪除段落格式Ctrl+Home(E)將插入點(diǎn)移到文檔開始Ctrl+S(F)保存當(dāng)前活動(dòng)文檔Ctrl+End(E)將插入點(diǎn)移到文檔結(jié)尾Ctrl+T(O)設(shè)置懸掛式縮進(jìn)Alt+/(A)快速選定整個(gè)表格Ctrl+U(O)給所選內(nèi)容添加下劃線Shift+F1(W)有關(guān)命令、屏幕區(qū)域的幫助信息或文字屬性Ctrl+V(E)在插入點(diǎn)插入剪貼板內(nèi)容Ctrl+Alt+I打印預(yù)覽Ctrl+W關(guān)閉文檔Ctrl+K(E)插入超級(jí)鏈接Ctrl+X(E)剪切所選內(nèi)容并將其放入剪貼板Ctrl+Shift+Space-bar創(chuàng)建不間斷空格Ctrl+Y(E)重復(fù)上一步操作(=F4=Alt+Enter)Ctrl+連字符創(chuàng)建不間斷連字符Ctrl+Z(E)取消上一步操作(=Alt+Backspace)Ctrl+Spacebar刪除字符格式A.2Ctrl與光標(biāo)鍵聯(lián)合使用的快捷鍵Ctrl+←可將插入點(diǎn)移到上一個(gè)英文單詞或中文詞Ctrl+→可將插入點(diǎn)移到下一個(gè)英文單詞或中文詞Ctrl+↑可將插入點(diǎn)移到上一個(gè)段落Ctrl+↓可將插入點(diǎn)移到下一個(gè)段落A.3Ctrl與部分?jǐn)?shù)字聯(lián)合使用的快捷鍵Ctrl+0可迅速在段前增加或刪除12磅的行距Ctrl+1改變段落的行距為單倍行距Ctrl+5改變段落的行距為1.5倍行距Ctrl+2改變段落的行距為雙倍行距A.4Ctrl與Shift+字母鍵聯(lián)合使用的快捷鍵Ctrl+Shift+P再通過按“↑”和“↓”鍵改變字號(hào)Ctrl+Shift+>增大所選文字的字號(hào)Ctrl+Shift+<減小所選文字的字號(hào)Ctrl+Shift+A將所有選定的字母設(shè)為大寫Ctrl+Shift+C復(fù)制選定內(nèi)容的格式Ctrl+Shift+D段落最后一行文字占滿全行Ctrl+Shift+E打開或關(guān)閉任務(wù)欄上的“修訂”標(biāo)記Ctrl+Shift+F再通過按“↑”和“↓”鍵改變字體Ctrl+Shift+H應(yīng)用隱藏文字格式Ctrl+Shift+K將所選字母中的小寫字母設(shè)成大寫,但字母字體大小不變Ctrl+Shift+L應(yīng)用“列表”樣式Ctrl+Shift+M取消左側(cè)段落縮進(jìn)Ctrl+Shift+N選定段落變?yōu)椤罢摹睒邮紺trl+Shift+Q將所選英文字母變?yōu)镾ymbol字體Ctrl+Shift+S再通過按“↑”和“↓”鍵改變樣式Ctrl+Shift+T減小懸掛縮進(jìn)量Ctrl+Shift+V對(duì)選定內(nèi)容粘貼格式Ctrl+Shift+W只給字、詞加下劃線,不給空格加下劃線Ctrl+Shift+*顯示非打印字符Alt+Shift+D插入“日期”域Alt+Ctrl+L插入ListNum域Alt+Shift+P插入頁(yè)數(shù)域Alt+Shift+T插入時(shí)間域A.5Ctrl與Alt+字母鍵聯(lián)合使用的快捷鍵Ctrl+Alt+D在文章末尾插入尾注Ctrl+Alt+F在當(dāng)前頁(yè)插入尾注Ctrl+Alt+K啟動(dòng)“自動(dòng)套用格式”Ctrl+Alt+LListnum域Ctrl+Alt+M創(chuàng)建批注Ctrl+Alt+N切換到普通視圖Ctrl+Alt+O切換到大綱視圖Ctrl+Alt+P切換到頁(yè)面視圖Ctrl+Alt+T輸入【?】Ctrl+Alt+Z返回到光標(biāo)先前位置Ctrl+Alt+1對(duì)當(dāng)前段落應(yīng)用“標(biāo)題1”樣式Ctrl+Alt+2對(duì)當(dāng)前段落應(yīng)用“標(biāo)題2”樣式Ctrl+Alt+3對(duì)當(dāng)前段落應(yīng)用“標(biāo)題3”樣式Ctrl+Alt+PageUp將插入點(diǎn)移到窗口開始處Ctrl+Alt+PageDown將插入點(diǎn)移到窗口結(jié)尾處Ctrl+Alt+連字符然后單擊要?jiǎng)h除的命令,可將此命令從菜單中刪除Ctrl+Alt+F2“文件”|“打開”命令A(yù).6功能鍵F1獲得“幫助”或“Off

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論