歐盟智能電網(wǎng)-技術(shù)發(fā)展、趨勢(shì)、價(jià)值鏈和市場(chǎng)現(xiàn)狀報(bào)告2023(英文版)-歐盟理事會(huì)_第1頁(yè)
歐盟智能電網(wǎng)-技術(shù)發(fā)展、趨勢(shì)、價(jià)值鏈和市場(chǎng)現(xiàn)狀報(bào)告2023(英文版)-歐盟理事會(huì)_第2頁(yè)
歐盟智能電網(wǎng)-技術(shù)發(fā)展、趨勢(shì)、價(jià)值鏈和市場(chǎng)現(xiàn)狀報(bào)告2023(英文版)-歐盟理事會(huì)_第3頁(yè)
歐盟智能電網(wǎng)-技術(shù)發(fā)展、趨勢(shì)、價(jià)值鏈和市場(chǎng)現(xiàn)狀報(bào)告2023(英文版)-歐盟理事會(huì)_第4頁(yè)
歐盟智能電網(wǎng)-技術(shù)發(fā)展、趨勢(shì)、價(jià)值鏈和市場(chǎng)現(xiàn)狀報(bào)告2023(英文版)-歐盟理事會(huì)_第5頁(yè)
已閱讀5頁(yè),還剩53頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023

ISSN1831-9424

CLEANENERGYTECHNOLOGY

OBSERVATORY

SmartgridsintheEuropeanUnion

STATUSREPORTONTECHNOLOGY

DEVELOPMENT,TRENDS,VALUECHAINS&

MARKETS

EUR31673EN

ThispublicationisaTechnicalreportbytheJointResearchCentre(JRC),theEuropeanCommission’sscienceandknowledgeservice.Itaimstoprovideevidence-basedscientificsupporttotheEuropeanpolicymakingprocess.ThecontentsofthispublicationdonotnecessarilyreflectthepositionoropinionoftheEuropeanCommission.NeithertheEuropeanCommissionnoranypersonactingonbehalfoftheCommissionisresponsiblefortheusethatmightbemadeofthispublication.ForinformationonthemethodologyandqualityunderlyingthedatausedinthispublicationforwhichthesourceisneitherEurostatnorotherCommissionservices,usersshouldcontactthereferencedsource.ThedesignationsemployedandthepresentationofmaterialonthemapsdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheEuropeanUnionconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.

Contactinformation

Name:AntonioDePaola

Address:ViaEnricoFermi,2749

Email:antonio.de-paola@ec.europa.eu

EUScienceHub

https://joint-research-centre.ec.europa.eu

JRC134988

EUR31673EN

PDFISBN978-92-68-07825-9ISSN1831-9424

doi:10.2760/237911

KJ-NA-31-673-EN-N

Luxembourg:PublicationsOfficeoftheEuropeanUnion,2023

?EuropeanUnion,2023

ThereusepolicyoftheEuropeanCommissiondocumentsisimplementedbytheCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CCBY4.0)licence

(/licenses/by/4.0/)

.Thismeansthatreuseisallowedprovidedappropriatecreditisgivenandanychangesareindicated.

ForanyuseorreproductionofphotosorothermaterialthatisnotownedbytheEuropeanUnion/EuropeanAtomicEnergyCommunity,permissionmustbesoughtdirectlyfromthecopyrightholders.TheEuropeanUniondoesnotownthecopyrightinrelationtothefollowingelements:

-Coverpageillustration:infraFotolia_65145278

-Anyotherimagessoindicatedinthebodyofthedocument

Howtocitethisreport:DePaola,A.,Andreadou,N.,Kotsakis,E.,CleanEnergyTechnologyObservatory:SmartGridsintheEuropeanUnion-2023StatusReportonTechnologyDevelopment,Trends,ValueChainsandMarkets,PublicationsOfficeoftheEuropeanUnion,Luxembourg,2023,doi:10.2760/237911,JRC134988.

i

Contents

Abstract 1

ForewordontheCleanEnergyTechnologyObservatory 2

Acknowledgements 3

ExecutiveSummary 4

1Introduction 6

1.1Scopeandcontext 6

1.1.1High-VoltageDirect-Current(HVDC)Technologies 6

1.1.2SmartMeteringInfrastructure 6

1.2MethodologyandDataSources 6

2High-VoltageDirect-Current(HVDC)Technology 7

2.1Technologydevelopmentandtrends 7

2.1.1TechnologyReadinesslevels 7

2.1.2Installedcapacityandproduction 8

2.1.3Technologycosts 10

2.1.4Patentingtrends 11

2.1.5PublicfundingandimpactofEU-supportedresearch 12

2.2ValueChainAnalysis 12

2.3EUMarketPositionandGlobalCompetiveness 13

2.3.1Global&EUmarketleaders 13

2.3.2Marketvalue 14

3.AdvancedMeteringInfrastructure 15

3.1Technologydevelopmentandtrends 16

3.2Valuechainanalysis 18

3.3Globalcompetiveness 24

3.3.1SmartMeterMarketLeaders 25

4.Conclusions 27

References 28

Listofabbreviationsanddefinitions 30

Listoffigures 31

Listoftables 32

Annexes 33

Annex1SummaryTableofDataSourcesfortheCETOIndicators 34

1

Abstract

ThisdocumentprovidesanoverviewofthelatesttechnologicalandmarkettrendsonthetopicofSmartGridsintheEuropeanUnion.Giventhebroadscopeofthetopicandthecomprehensiveapproachfollowedinthelastyearreport,theanalysishasfocusedinsteadontwospecificenablingtechnologieswhichhaveexhibitedsignificantdevelopmentsinthelastyear:HighVoltageDirect-Current(HVDC)connectionsandSmartMeteringInfrastructure.ThechoiceofanalysingHVDCrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid,whereasthefocusonSmartMeteringInfrastructureismeanttohighlightitsrelevanceintheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Foreachofthesetwotopics,thecurrentstatusisreportedintermsoftechnologydevelopmentsandtrends,valuechainanalysisandglobalcompetitiveness.

2

ForewordontheCleanEnergyTechnologyObservatory

TheEuropeanCommissionsetuptheCleanEnergyTechnologyObservatory(CETO)in2022tohelpaddressthecomplexityandmulti-facedcharacterofthetransitiontoaclimate-neutralsocietyinEurope.TheEU’sambitiousenergyandclimatepoliciescreateanecessitytotackletherelatedchallengesinacomprehensivemanner,recognizingtheimportantroleforadvancedtechnologiesandinnovationintheprocess.

CETOisajointinitiativeoftheEuropeanCommissionJointResearchCentre(JRC),whoruntheobservatory,andDirectorateGeneralsResearchandInnovation(R&I)andEnergy(ENER)onthepolicyside.Itsoverallobjectivesareto:

-monitortheEUresearchandinnovationactivitiesoncleanenergytechnologiesneededforthedeliveryoftheEuropeanGreenDeal

-assessthecompetitivenessoftheEUcleanenergysectoranditspositioningintheglobalenergymarket

-buildonexistingCommissionstudies,relevantinformation&knowledgeinCommissionservicesandagencies,andtheLowCarbonEnergyObservatory(2015-2020)

-publishreportsontheStrategicEnergyTechnologyPlan

(SET-Plan)

SETISonlineplatform

CETOprovidesarepositoryoftechno-andsocio-economicdataonthemostrelevanttechnologiesandtheirintegrationintheenergysystem.Ittargetsinparticularthestatusandoutlookforinnovativesolutionsaswellasthesustainablemarketuptakeofbothmatureandinventivetechnologies.TheprojectservesasprimarysourceofdatafortheCommission’sannualprogressreportson

competitivenessofcleanenergytechnologies.

ItalsosupportstheimplementationofanddevelopmentofEUresearchandinnovationpolicy.

Theobservatoryproducesaseriesofannualreportsaddressingthefollowingthemes:

-CleanEnergyTechnologyStatus,ValueChainsandMarket:coveringadvancedbiofuels,batteries,bioenergy,carboncaptureutilisationandstorage,concentratedsolarpowerandheat,geothermalheatandpower,heatpumps,hydropower&pumpedhydropowerstorage,novelelectricityandheatstoragetechnologies,oceanenergy,photovoltaics,renewablefuelsofnon-biologicalorigin(other),renewablehydrogen,solarfuels(direct)andwind(offshoreandonshore).

-CleanEnergyTechnologySystemIntegration:building-relatedtechnologies,digitalinfrastructureforsmartenergysystem,industrialanddistrictheat&coldmanagement,standalonesystems,transmissionanddistributiontechnologies,smartcitiesandinnovativeenergycarriersandsupplyfortransport.

-ForesightAnalysisforFutureCleanEnergyTechnologiesusingWeakSignalAnalysis

-CleanEnergyOutlooks:AnalysisandCriticalReview

-SystemModellingforCleanEnergyTechnologyScenarios

-OverallStrategicAnalysisofCleanEnergyTechnologySectorMoredetailsareavailableonthe

CETOwebpages

3

Acknowledgements

Theauthorsareparticularlygratefulforthecommentsreceivedfromthefollowingcolleagues:JRC.C.7ERICteamcolleagueAlikiGeorgakaki

GiuliaSERRA(ENER),PeterHorvath(ENER),PabloRiesgoAbeledo(ENER)fortheirreviewandcomments.

JRCcolleaguesNigelTAYLOR(CETOprojectleader)andAndreasSCHMITZ(CETOdeputyprojectleader)fortheirsupport,reviewandcomments.

Theauthorswouldalsoliketothanktheexternalstakeholdersthathavecontributedwithinterestingdiscussionsandinformativedocumentationtothepresentreport:VolkerWendtandAlbertoLampasona(Europacable),BernarddeClercqandHaraldVanOutryved’Ydewalle(EliaGroup)andDiederikPeereboom(T&DEurope).

Authors

DePaola,A.,Andreadou,N.,Kotsakis,E.

4

ExecutiveSummary

ThisreportaimstoprovideanupdatedoverviewofthelatesttrendsanddevelopmentsintheSmartGridsector.Giventheverybroadscopeofthesubjectandconsideringthecomprehensiveapproachfollowedinthe2022report(EuropeanCommission,2022),thisdocumentfocusesinsteadontwospecifictopicsthatexhibitedverysignificantdevelopmentsinthelastyear:High-VoltageDirect-Current(HVDC)technologyandSmartMeteringInfrastructure.

High-VoltageDirect-Current(HVDC)systems

HVDCsystemsareestablishingthemselvesasafundamentalenablingtechnologyforthedecarbonisationoftheenergysystem.ThankstotheirincreasedcapacityandlowerlossesoverlongdistanceswithrespecttotheirACequivalents,theycanefficientlystrengthentheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandfacilitatingtheinterconnectionoflargeoffshorewindplants.Theanalysishasshownthefollowing:

.HVDCisalreadyamatureandwell-establishedtechnologywithseveralsystemsalreadyproveninoperationalenvironments.However,therearestillsignificantmarginsfornewtechnologicaldevelopmentsandimprovements,particularlyinregardtoDC/DCbreakersanduseofCross-linkedPolyethylene(XLPE)cablesatveryhighvoltagelevels(525kVandabove).

.TheworldwideinstalledHVDCcapacityhastripledfrom2010,reachingatotallengthof100000kmandatotalcapacityof350GWattheendof2021.Asof2022,theHVDCcapacityinEuropeamountstoaround43GW,withadditional63GWcomingfrom51newprojects(mostlyintheplanningandpermittingstage.

.Fromapatentingperspective,themostactivecompaniesinthisfieldareChinese(StateGridCorporationofChinaandChinaSouthernPowerGrid).EuropeancompaniessuchasAlstom(France)andABB(Sweden-Switzerland)exhibitsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversity.

.TheEUisprovidingsubstantialfundingtoHVDC-relatedresearchactivities,with6fundingcallsandatotalbudgetof1300M€intheHorizonEuropeprogram.

.HVDCtransmissionprojectsaregenerallysuppliedseparatelyintheirmaincomponents,i.e.point-to-pointlinesandconverterstations.Currently,procurementleadtimesforcablesusuallyrangebetweentwoandfouryearswhilethetypicalleadtimeforHVDCconverterstationsisbetweentwoandthreeyears.However,leadtimesappeartobeincreasinginthelastperiod,mostlyduetoanincreasingworldwidedemandandextra-Europeancountriesthatareabletoplacebulkordersatcompetitivepricesandwithmorerelaxedstandards.OnepossiblesolutioncouldbeasimplificationanduniformimplementationintheMemberstatesoftheEUtenderinglaw.

.Intermsofsupplychains,themainEuropeanmanufacturersoftransformersareconsideredleadingglobalplayers.ThesameistruefortheEuropeancablemanufacturers,whoareexpectedtosatisfytheforecastdemandoverthenexttenyears.Theonlyrelevantconcernisassociatedwithhigh-powersemiconductors(akeycomponentofconvertervalves),whoseproductionisconcentratedinTaiwan.

.EstimationsonthevalueoftheglobalHVDCmarketat2021rangebetween9.48and16.96Bn$.Thefutureoutlookappearsquitepositive,withCompoundAnnualGrowthRate(CAGR)overthenext10yearsestimatedbetween7.1%and10.6%.

5

AdvancedMeteringInfrastructure

SmartmetersandingeneralAdvancedMeteringInfrastructureplayakeyroletothedigitalizationoftheenergygrid.Theyhavenumerousadvantagestoofferatmultipleactors,fromtheDSO/energyprovidertotheend-consumers.

Theadvantagesthatadvancedmeteringinfrastructureofferaresummarisedasfollowsbothfromanenergyproviderperspectiveandend-consumerperspective:

.Gridmonitoringandbettergridmanagement(outages,faultsinthenetwork);

.Enableinitiaveslikesmartcities,increaseusageofrenewableenergysources;

.Empowerconsumerstocontroltheirconsumptions;

.Enableenergysavinginacomprehensiveandeffectiveway;

.Enabletheparticipationinsmartenergyprograms,likedemandsideflexibilityprogram.

.Furthermore,associatedtoEVs(notably@Home/@workcharging),theyallowtwo-wayenergyanddataflows(V2G),significantlycontributingtopeak-shaving,thereforeimprovingtheoveralleconomiccompetitivenessofaregion(seeChinaandSouthKorearecentlylegislativeinitiativestogeneraliseV2GpluslinkswithAFIR,EPBD,SustainableTransportForuminitiative).

Advancemeteringinfrastructurehasattractedtheinterestofstakeholdersintheenergychainatgloballevel,withmassiverollout-plansongoingorscheduledaroundtheglobe.Duetothetechnology’simportance,itisconsideredfundamentaltomonitorthetechnologyreadinesslevel,thevaluechainandtheglobalmarketstatus.Forthisreason,theCleanenergyTechnologyObservatoryoffersmonitoringoftheAdvancedMeteringInfrastructuretechnology.Forthecurrentrelease,weprovideanupdateandacomparisonwithlastyear’sreport,showingthelatestimprovementsinthefieldtogetherwiththeoverallpicture.TherelatedthemeofcharginginfrastructureforEVshasnotbeenconsideredinthisdocument,asitisalreadyextensivelyanalysedinthelatestCINDECSreport(Kuokkanen,etal.,2023).

6

1Introduction

1.1Scopeandcontext

ThisdocumentaddressestheCleanEnergyTechnologyObservatorySub-TaskA.2andaimstoprovideanupdatedoverviewofthelatestdevelopmentsandtrendsintheSmartGridsector.Thereportreleasedlastyear(EuropeanCommission,2022)analysedfivedistincttopics:TransmissionNetworkInnovation,Grid-ScaleStorageServices,ElectricVehicleSmartCharging,AdvancedMeteringInfrastructureandHomeEnergyManagementSystems.Differentlyfromtheextensivescopeconsideredin(EuropeanCommission,2022),thepresentreportfocusesindetailontwospecificsectors(High-VoltageDirect-CurrentTechnologiesandSmartMeteringInfrastructure)thatexhibitedverysignificantdevelopmentsinthelastyear.Inregardtothesetwotopics,thereportpresentstheirmostrelevanttechnologicalstatusesandtrends,analisesthekeyfeaturesandmosttimelyissuesoftheirvaluechainsandassessesthemarketpositionandglobalcompetitevenessofEUcompanies.

1.1.1High-VoltageDirect-Current(HVDC)Technologies

Thechoiceofthisfirsttopicrecognizesthefundamentalrolethatthenetworkinfrastructurewillplayinthesmoothintegrationofnewrenewablesourcesandinthesupporttoanefficientoperationofadecarbonizedgrid.TheanalysisfollowsuponthegeneralTransmissionInnovationoverviewprovidedin(EuropeanCommission,2022)byfocusingonthespecifictopicofHigh-VoltageDCTransmission.ThescopeofthestudyincludesthemainphysicalassetsofHVDCsystems,i.e.transformers,HVDCconverters,DCcircuitbreakersandcables.Thestudydoesnotconsiderotheremergingtechnologiesinthetransmissionsectors,suchasFlexibleAlternatingCurrentsTransmissionSystems(FACTS),whichwillbethesubjectoffutureanalyses.

1.1.2SmartMeteringInfrastructure

ThechoiceofthistopicintendstoaddressmainadvancementsintheAdvancedMeteringInfrastructurefieldtogetherwithprovidingtheoverallpicture,notonlyatEuropeanlevel,butatgloballevel.Indeed,advancemeteringinfrastrureandinparticular,smartmeters,playakeyrolefortheupgradeoftheenergygrid,withnumeroussmartmeterrolloutplansworldwide.Thescopeofthisstudyistogiveanupdatewithrespecttolastyear’sstatusforsmartmeters,andinparticularfortheirtechnologyreadinesslevel,thevaluechainsandtheglobalmarketpicture.

1.2MethodologyandDataSources

ThereporthasbeenwrittenfollowingtheCETOmethodologythataddressesthreeprincipalaspects:

a)Technologymaturitystatus,developmentandtrends

b)Valuechainanalysis

c)GlobalmarketsandEUpositioning

Themainsourcesutilisedforthestudyinclude:

-Technicalreportsbypublicinstitutionsandprivateentities

-Scientificreviewpapersontechnologystate-ofthe-art

-ENTSO-Eenergyscenarios

-CORDISdatabaseforHorizon2020andHorizonEuroperesearchprojects

Additionalinformation,bothintheformofqualitativeassessmentsandquantitativedata,hasbeenobtainedthroughcontactswithexternalstakeholders,includingTSOentities(Elia,ENTSO-E),individualmanufacturers(Hitachi,GeneralElectric)andindustryassociations(T&DEurope,Europacable).

7

2High-VoltageDirect-Current(HVDC)Technology

High-VoltageDirectCurrent(HVDC)systemsareplayinganincreasinglysignificantroleinsupportingthedecarbonisationoftheenergysystem.Thankstotheirincreasedcapacityandlowerlossesoverlongdistances(see

Figure1)

withrespecttotheirACequivalents,theycanstrengthenefficientlytheinterconnectivityoftheenergysystembylinkingdistantpowernetworkswithdifferentfrequenciesandsignificantlyfacilitatingtheinterconnectionoflargeoffshorewindplants.

Figure1.ComparisonofenergylossesinACandDCoverheadlines.

Source:(ABB,2014)

Initsbasicstructure(see

Figure2)

,aHVDCsystemincludes:

-CircuitbreakersontheACside(considerablycheaperthanDCbreakers)

-HVDCconverters,includingAC/DCandDC/ACconvertersandequipmentforreactivepowersupportandfiltering.TheAC/DCandDC/ACconverterscangenerallyusetwodifferenttopologies:Line

CommutatedConverters(LCC),awell-establishedtechnologyrelyingonthyristors,andVoltageSourceConverters(VSC),whicharemorerecentandprovidegreatercontrollability

-HVDCconductors,whichcaneitherbeonshore(overheadorunderground)oroffshore(mainlysubmarinecables)

Figure2.GenericHVDCtransmissionprojectlayout.

Source:JRCre-elaborationoffigurein(Alassi,Ba?ales,Ellabban,Adam,&MacIver,2019)

2.1Technologydevelopmentandtrends

2.1.1TechnologyReadinesslevels

HVDCtransmissionhasnowadaysreachedasignificantlevelofmaturity.AsindicatedinthelatesttechnologyfactsheetsbyENTSO-E(ENTSO-E,2021),thebulkoftheHVDC-relatedtechnologieshavealreadybeenprovenintheoperationalenvironmentofactualsystem(TRL9).

8

Figure3.TechnologyReadinessLevel(TRL)ofprimaryenergytransmissiontechnologies(HVDCcomponentshighlightedinyellow).

Source:(ENTSO-E,2021)

Forexample,LineCommutatedConverters(LCC)areawell-establishedtechnologythathasbeenusedinHVDCsystemssincethe1970sandnowadayscanoperateonlinesuptoalengthof2000km.VoltageSourceConverters(VSC)havebeendevelopedmorerecentlybuttheyarebeingutilisedinmostofthenewHVDCprojectsastheyallowrapidcontrolofactiveandreactivepower.TheseconvertersgenerallyachieveaTRLof8-9,withtheexceptionofDC/DCconverterwhicharecurrentlyonlybeingvalidatedinlab(TRL4).

Intermsofconductors,MassImpregnated(MI)cablesrepresentaveryconsolidatedandtraditionaltechnologyforHVDCsystem,usedforbothon-shoreundergroundconnectionsandoff-shoreapplications.Recently,Cross-linkedPolyethylene(XLPE)cables,i.e.conductorswithextrudedinsulation,areseeinganincreaseddiffusionastheycanoperateatawiderangeoftemperaturesandareparticularlyresistanttocorrosionandvibrations.XLPEcablesoperatingat320kVareaverymaturetechnology(TRL9)whiletheirapplicationat525kVisstillbeingvalidated(TRL5)andtheiruseat600kVisatanexperimentalstage(TRL3).

Finally,intermsofswitchingcomponents,theHVDCcircuitbreakersarelessmaturethentheirACcounterparts,mostlyduetothechallengeofbreakingdirectcurrentinabsenceofzero-currentcrossings.Atthemoment,High-VoltageDCbreakersarebeingdemonstratedinrelevantenvironments(TRL6)whileExtra-High-Voltage(345kVandabove)DCbreakersarestillatanexperimentalstage(TRL3).

2.1.2Installedcapacityandproduction

Accordingtothelatestdataprovidedin(IEA,2023)andshownin

Figure4,

bytheendof2021thetotallengthofHVDClineshasreached100000kmandatotaltransmissioncapacityofmorethan350GW.HVDClineshavealmosttripledsince2010,althoughtheystillrepresentonly2%ofthetotaltransmissioninfrastructure.In2021,thelargestcapacityadditionshavebeenmadeinChina,whichintroduced50%ofthenewHVDClineswhileEuropecontributedby10%.

9

Figure4.GlobalHVDCtransmissionlinesbycountry/regionandlinetype.

Source:(IEA,2023)

Asof2022,theHVDCtransmissioncapacityinstalledinEuropeamountstoaround43GW(PowerTechnologyResearch,2022).Germanyleadsthismetricwith11.25GWofinstalledHVDCcapacity,whichmostlyconsistsofinterconnectionofoffshorepowerplantsintheNorthSearegion.ThesecondcountryintermsofinstalledcapacityistheUK,with6.4GWofinstalledHVDClinks,includingseveralcross-borderinterconnectionswithFrance,theNetherlandsandNorway.OthercountrieswithsubstantialHVDCcapacityareItaly,with3.7GWofinternallinksandconnectionswithFranceandMontenegroandDenmark,with2GWthataremostlysubseaconnectionswithSweden,NorwayandGermany.Forfutureinvestments,(ENTSO-E,2022)envisages51projectsthatentailneworexpandedDCtransmissionlines,with3projectsalreadyunderconstruction,31intheevaluationorplanningstageand17inthepermittingstage.Theadditionalaggregatecapacityoftheseprojectsamountstoabout63GW.AdetailedprojectiononthepotentialdemandforHigh-Voltage(HV)andExtraHigh-Voltage(EHV)cablesoverthenexttenyears,estimatedbyEuropacableonthebasisoftheENTSO-

E’sTYNDP2022andthedifferentNationalDevelopmentPlansisshownin

Table1.

Table1.ProjectedEuropeandemandofHVandEHVcablesby2032.

Cables(km)

HV&EHVACland

HV&EHV

DCland

HV&EHVACsubsea

HV&EHV

DCsubsea

Total

ENTSO-E’sTYNDP2022

804

9,670

2,478

38,752

51,764

ENTSO-E’sTYNDP2022&EuropeanNationalDevelopmentPlans

4,116

14,054

11,295

58,292

87,757

Source:EuropacableelaborationofTYNDP2022andEuropeanNationalDevelopmentPlans.

Itisestimatedthat,inthenexttenyears,thetotallengthofnewlandcablesinstalledinEuropeforHVDCprojectswillbeapproximatelybetween10,000and14,000km,aquantitysignificantlyhigherthanfornewACassets.Newsubseainstallationswillbeevenmoresubstantial,withanestimateofnewDCsubseacablesapproximatelybetween39,000and58,000km.

10

TheEuropeanUnionsupportsthissubstantialdeploymentofHVDCinfrastructurethroughitsProjectsofCommonInterest(PCIs),i.e.,keycross-borderinfrastructureprojectsthatbringsignificantpositiveimpactonenergymarketintegrationandenergysecurityinatleasttwoEUcountries(EuropeanCommission,2021).Suchprojectsbenefitfromanacceleratedpermit-grantingprocess,improvedregulatorytreatment,andthepossibilitytoapplyforfinancialsupportundertheConnectingEuropeFacility(CEF)forEnergy(totalbudgetof€5.84billionfortheperiod2021-2027).ThelatestPCIlist(EuropeanCommission,2021)includes14differentprojectsthatentailthedevelopmentofnewHVDClines.NineoftheseprojectsenvisageanHVDCconnectionbetweendifferentcountries,foratotal10.9GWofnewtransmissioncapacity,overatotalconnectionlengthofatleast3300km.FourotherprojectsentailthestrengtheningofnationalgridinfrastructureswithadditionalHVDClinks,foranadditional12GWcapacityandmorethan2200kmoflines.Finally,HVDCinterconnectorswillalsobeusedintheNorthSeaWindPowerHub,withtheobjectiveofconnecting12GWoffutureoffshorewindparkstoDenmark,theNetherlandsandGermany(EuropeanCommission,2021).

Intermsoftechnology,investmentshavebeengraduallyshiftingfromLCCtoVSCtransformers,withthelatterconstitutingthe72%ofnewinvestmentsbetween2010and2020,comparedtoonly44%intheprevioustenyears.Asshownin

Figure5,

newVSCprojectshavesignificantlyincreasedsince2015andhavereachedabout30GWofcumulativenewcapacityin2020.

Figure5.CumulativenewcapacityofVSCHVDClines.

Source:(Nishioka,Alvarez,&Omori,2020)

2.1.3Technologycosts

SomeofthelatestdataonthecostoftheHVDCtransmissioninfrastructureareprovidedin(DeSantis,James,Houchins,Saur,&Lyubovsky,2021),whichindicatesacapitalcostof933.34$/km-MWforatransmissionprojectof1610km(1000miles).Suchcostisgivenbythesumoffourmaincomponents,eachwithadifferentimpactonthetotal:thebiggestcostfactorsarematerials(57%)andsubstations(26%)whiletheimpactoflabor(11%)andRight-of-way(6%).ThesameauthorsalsoprovideacomparisonbetweenthecostsofACandDChigh-voltagelineoverdifferentconnectionlengths,asshownin

Figure6.

Itcanbeseenthatcostparityisachievedataround300miles(483km).Overlongerdistances,theadditionalcostsofthetransformersubstationsrequiredfortheHVDCconnectionsarecompensatedbytheincreasedefficiencyandlowerlossesprovidedbythedirectcurrentlink.

11

Figure6.ComparisonoftransmissioncostsvsdistanceforACandDCtechnologies.

Source:(DeSantis,James,Houchins,Saur,&Lyubovsky,2021)

2.1.4Patentingtrends

AsummaryofthepatentingactivitiesbykeyplayersintheHVDCsectorisshownin

Figure7.

ItcanbeseenthatthemostactivecompaniesinthisfieldarebyfarStateGridCorporationofChinaandChinaSouthernPowerGrid.Otherrelevantcompanieswithsmallerpatentingvolumesbuthighergeographicalreachandapplicationdiversityinclude:LSElectric(Korea),Alstom(France),NRElectric(China)andABB(Sweden-Switzerland).

Fi

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論