版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省合肥市四十二中學2024屆中考數(shù)學最后沖刺濃縮精華卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.一個多邊形的每個內角均為120°,則這個多邊形是()A.四邊形 B.五邊形 C.六邊形 D.七邊形2.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+43.如圖,中,,且,設直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關系的圖象為下列選項中的A. B. C. D.4.如圖,在矩形ABCD中,AB=4,BC=6,點E為BC的中點,將ABE沿AE折疊,使點B落在矩形內點F處,連接CF,則CF的長為()A. B. C. D.5.的相反數(shù)是A.4 B. C. D.6.方程的解是()A. B. C. D.7.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.8.一個六邊形的六個內角都是120°(如圖),連續(xù)四條邊的長依次為1,3,3,2,則這個六邊形的周長是()A.13 B.14 C.15 D.169.如果y=++3,那么yx的算術平方根是()A.2 B.3 C.9 D.±310.估算的運算結果應在(
)A.2到3之間 B.3到4之間C.4到5之間 D.5到6之間二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示的網格是正方形網格,點P到射線OA的距離為m,點P到射線OB的距離為n,則m__________n.(填“>”,“=”或“<”)12.4是_____的算術平方根.13.如圖,已知拋物線與坐標軸分別交于A,B,C三點,在拋物線上找到一點D,使得∠DCB=∠ACO,則D點坐標為____________________.14.如圖,在平面直角坐標系中,Rt△ABO的頂點O與原點重合,頂點B在x軸上,∠ABO=90°,OA與反比例函數(shù)y=的圖象交于點D,且OD=2AD,過點D作x軸的垂線交x軸于點C.若S四邊形ABCD=10,則k的值為.15.請從以下兩個小題中任選一個作答,若多選,則按第一題計分.A.正多邊形的一個外角是40°,則這個正多邊形的邊數(shù)是____________.B.運用科學計算器比較大?。篲_______sin37.5°.16.如圖,在△ABC中,AB=AC=2,∠BAC=120°,點D、E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長為________.三、解答題(共8題,共72分)17.(8分)某街道需要鋪設管線的總長為9000,計劃由甲隊施工,每天完成150.工作一段時間后,因為天氣原因,想要40天完工,所以增加了乙隊.如圖表示剩余管線的長度與甲隊工作時間(天)之間的函數(shù)關系圖象.(1)直接寫出點的坐標;(2)求線段所對應的函數(shù)解析式,并寫出自變量的取值范圍;(3)直接寫出乙隊工作25天后剩余管線的長度.18.(8分)2018年江蘇省揚州市初中英語口語聽力考試即將舉行,某校認真復習,積極迎考,準備了A、B、C、D四份聽力材料,它們的難易程度分別是易、中、難、難;a,b是兩份口語材料,它們的難易程度分別是易、難.從四份聽力材料中,任選一份是難的聽力材料的概率是.用樹狀圖或列表法,列出分別從聽力、口語材料中隨機選一份組成一套完整的模擬試卷的所有情況,并求出兩份材料都是難的一套模擬試卷的概率.19.(8分)如圖,M、N為山兩側的兩個村莊,為了兩村交通方便,根據(jù)國家的惠民政策,政府決定打一直線涵洞.工程人員為了計算工程量,必須計算M、N兩點之間的直線距離,選擇測量點A、B、C,點B、C分別在AM、AN上,現(xiàn)測得AM=1千米、AN=1.8千米,AB=54米、BC=45米、AC=30米,求M、N兩點之間的距離.20.(8分)先化簡,再求值:,其中x滿足x2﹣x﹣1=1.21.(8分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.22.(10分)隨著通訊技術迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷某校數(shù)學興趣小組設計了“你最喜歡的溝通方式”調查問卷每人必選且只選一種,在全校范圍內隨機調查了部分學生,將統(tǒng)計結果繪制了如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:這次統(tǒng)計共抽查了______名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為______;將條形統(tǒng)計圖補充完整;該校共有1500名學生,請估計該校最喜歡用“微信”進行溝通的學生有多少名.23.(12分)把0,1,2三個數(shù)字分別寫在三張完全相同的不透明卡片的正面上,把這三張卡片背面朝上,洗勻后放在桌面上,先從中隨機抽取一張卡片,記錄下數(shù)字.放回后洗勻,再從中抽取一張卡片,記錄下數(shù)字.請用列表法或樹狀圖法求兩次抽取的卡片上的數(shù)字都是偶數(shù)的概率.24.在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由題意得,180°(n-2)=120°,解得n=6.故選C.2、A【解析】
先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;3、D【解析】
Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質得出∠OCD=∠A,即∠AOD=∠OCD=45°,進而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關系的圖象應為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關系式,由函數(shù)解析式來選擇圖象.4、B【解析】
連接BF,由折疊可知AE垂直平分BF,根據(jù)勾股定理求得AE=5,利用直角三角形面積的兩種表示法求得BH=,即可得BF=,再證明∠BFC=90°,最后利用勾股定理求得CF=.【詳解】連接BF,由折疊可知AE垂直平分BF,∵BC=6,點E為BC的中點,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,則BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故選B.【點睛】本題考查的是翻折變換的性質、矩形的性質及勾股定理的應用,掌握折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等是解題的關鍵.5、A【解析】
直接利用相反數(shù)的定義結合絕對值的定義分析得出答案.【詳解】-1的相反數(shù)為1,則1的絕對值是1.故選A.【點睛】本題考查了絕對值和相反數(shù),正確把握相關定義是解題的關鍵.6、D【解析】
按照解分式方程的步驟進行計算,注意結果要檢驗.【詳解】解:經檢驗x=4是原方程的解故選:D【點睛】本題考查解分式方程,注意結果要檢驗.7、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.8、C【解析】
解:如圖所示,分別作直線AB、CD、EF的延長線和反向延長線使它們交于點G、H、I.因為六邊形ABCDEF的六個角都是120°,所以六邊形ABCDEF的每一個外角的度數(shù)都是60°.所以都是等邊三角形.所以所以六邊形的周長為3+1+4+2+2+3=15;故選C.9、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術平方根是1.故選B.10、D【解析】
解:=,∵2<<3,∴在5到6之間.故選D.【點睛】此題主要考查了估算無理數(shù)的大小,正確進行計算是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、>【解析】
由圖像可知在射線OP上有一個特殊點Q,點Q到射線OA的距離QD=2,點Q到射線OB的距離QC=1,于是可知∠AOP>∠BOP,利用銳角三角函數(shù)sin∠AOP>【詳解】由題意可知:找到特殊點Q,如圖所示:設點Q到射線OA的距離QD,點Q到射線OB的距離QC由圖可知QD=2,∴sin∠AOP=QDOP∴sin∴m∴m>n【點睛】本題考查了點到線的距離,熟知在直角三角形中利用三角函數(shù)來解角和邊的關系是解題關鍵.12、16.【解析】試題解析:∵42=16,∴4是16的算術平方根.考點:算術平方根.13、(,),(-4,-5)【解析】
求出點A、B、C的坐標,當D在x軸下方時,設直線CD與x軸交于點E,由于∠DCB=∠ACO.所以tan∠DCB=tan∠ACO,從而可求出E的坐標,再求出CE的直線解析式,聯(lián)立拋物線即可求出D的坐標,再由對稱性即可求出D在x軸上方時的坐標.【詳解】令y=0代入y=-x2-2x+3,∴x=-3或x=1,∴OA=1,OB=3,令x=0代入y=-x2-2x+3,∴y=3,∴OC=3,當點D在x軸下方時,∴設直線CD與x軸交于點E,過點E作EG⊥CB于點G,∵OB=OC,∴∠CBO=45°,∴BG=EG,OB=OC=3,∴由勾股定理可知:BC=3,設EG=x,∴CG=3-x,∵∠DCB=∠ACO.∴tan∠DCB=tan∠ACO=,∴,∴x=,∴BE=x=,∴OE=OB-BE=,∴E(-,0),設CE的解析式為y=mx+n,交拋物線于點D2,把C(0,3)和E(-,0)代入y=mx+n,∴,解得:.∴直線CE的解析式為:y=2x+3,聯(lián)立解得:x=-4或x=0,∴D2的坐標為(-4,-5)設點E關于BC的對稱點為F,連接FB,∴∠FBC=45°,∴FB⊥OB,∴FB=BE=,∴F(-3,)設CF的解析式為y=ax+b,把C(0,3)和(-3,)代入y=ax+b解得:,∴直線CF的解析式為:y=x+3,聯(lián)立解得:x=0或x=-∴D1的坐標為(-,)故答案為(-,)或(-4,-5)【點睛】本題考查二次函數(shù)的綜合問題,解題的關鍵是根據(jù)對稱性求出相關點的坐標,利用直線解析式以及拋物線的解析式即可求出點D的坐標.14、﹣1【解析】
∵OD=2AD,∴,∵∠ABO=90°,DC⊥OB,∴AB∥DC,∴△DCO∽△ABO,∴,∴,∵S四邊形ABCD=10,∴S△ODC=8,∴OC×CD=8,OC×CD=1,∴k=﹣1,故答案為﹣1.15、9,>【解析】
(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學計算器計算即可比較大小.【詳解】(1)正多邊形的一個外角是40°,任意多邊形外角和等于360(2)利用科學計算器計算可知,sin37.5°.故答案為(1).9,(2).>【點睛】此題重點考察學生對正多邊形外交和的理解,掌握正多邊形外角和,會用科學計算器是解題的關鍵.16、1-1.【解析】
將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,由AB=AC=2、∠BAC=120°,可得出∠ACB=∠B=10°,根據(jù)旋轉的性質可得出∠ECG=60°,結合CF=BD=2CE可得出△CEG為等邊三角形,進而得出△CEF為直角三角形,通過解直角三角形求出BC的長度以及證明全等找出DE=FE,設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中利用勾股定理可得出FE=x,利用FE=6-1x=x可求出x以及FE的值,此題得解.【詳解】將△ABD繞點A逆時針旋轉120°得到△ACF,取CF的中點G,連接EF、EG,如圖所示.∵AB=AC=2,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE,∴CG=CE,∴△CEG為等邊三角形,∴EG=CG=FG,∴∠EFG=∠FEG=∠CGE=10°,∴△CEF為直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE和△AFE中,,∴△ADE≌△AFE(SAS),∴DE=FE.設EC=x,則BD=CF=2x,DE=FE=6-1x,在Rt△CEF中,∠CEF=90°,CF=2x,EC=x,EF==x,∴6-1x=x,x=1-,∴DE=x=1-1.故答案為:1-1.【點睛】本題考查了全等三角形的判定與性質、勾股定理以及旋轉的性質,通過勾股定理找出方程是解題的關鍵.三、解答題(共8題,共72分)17、(1)(10,7500)(2)直線BC的解析式為y=-250x+10000,自變量x的取值范圍為10≤x≤40.(3)1250米.【解析】
(1)由于前面10天由甲單獨完成,用總的長度減去已完成的長度即為剩余的長度,從而求出點B的坐標;(2)利用待定系數(shù)法求解即可;(3)已隊工作25天后,即甲隊工作了35天,故當x=35時,函數(shù)值即為所求.【詳解】(1)9000-150×10=7500.∴點B的坐標為(10,7500)(2)設直線BC的解析式為y=kx+b,依題意,得:解得:∴直線BC的解析式為y=-250x+10000,∵乙隊是10天之后加入,40天完成,∴自變量x的取值范圍為10≤x≤40.(3)依題意,當x=35時,y=-250×35+10000=1250.∴乙隊工作25天后剩余管線的長度是1250米.【點睛】本題考查了一次函數(shù)的應用,理解題意觀察圖象得到有用信息是解題的關鍵.18、(1);(2).【解析】【分析】(1)依據(jù)A、B、C、D四份聽力材料的難易程度分別是易、中、難、難,即可得到從四份聽力材料中,任選一份是難的聽力材料的概率是;(2)利用樹狀圖列出分別從聽力、口語材料中隨機選一份組成一套完整的模擬試卷的所有情況,即可得到兩份材料都是難的一套模擬試卷的概率.【詳解】(1)∵A、B、C、D四份聽力材料的難易程度分別是易、中、難、難,∴從四份聽力材料中,任選一份是難的聽力材料的概率是=,故答案為;(2)樹狀圖如下:∴P(兩份材料都是難)=.【點睛】本題主要考查了利用樹狀圖或列表法求概率,當有兩個元素時,可用樹形圖列舉,也可以列表列舉.隨機事件A的概率P(A)=事件A可能出現(xiàn)的結果數(shù)除以所有可能出現(xiàn)的結果數(shù).19、1.5千米【解析】
先根據(jù)相似三角形的判定得出△ABC∽△AMN,再利用相似三角形的性質解答即可【詳解】在△ABC與△AMN中,,,∴,∵∠A=∠A,∴△ABC∽△ANM,∴,即,解得MN=1.5(千米),因此,M、N兩點之間的直線距離是1.5千米.【點睛】此題考查相似三角形的應用,解題關鍵在于掌握運算法則20、2.【解析】
根據(jù)分式的運算法則進行計算化簡,再將x2=x+2代入即可.【詳解】解:原式=×=×=,∵x2﹣x﹣2=2,∴x2=x+2,∴==2.21、(1)證明見解析;(2)證明見解析;(3)74.【解析】
(1)根據(jù)四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,F(xiàn)C=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據(jù)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,F(xiàn)C=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.22、(1)100,108°;(2)答案見解析;(3)600人.【解析】
(1)先利用QQ計算出宗人數(shù),再用百分比計算度數(shù);(2)按照扇形圖補充條形圖;(3)利用微信溝通所占百分比計算總人數(shù).【詳解】解:(1)喜歡用電話溝通的人數(shù)為20,所占百分比為20%,∴此次共抽查了:20÷20%=100人.喜歡用QQ溝通所占比例為:,∴QQ的扇形圓心角的度數(shù)為:360°×=108°.(2)喜歡用短信的人數(shù)為:100×5%=5人喜歡用微信的人數(shù)為:100-20-5-30-5=40補充圖形,如圖所示:(3)喜歡用微信溝通所占百分比為:×100%=40%.∴該校共有1500名學生,估計該校最喜歡用“微信”進行溝
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度數(shù)據(jù)中心專用電纜綠色環(huán)保認證合同范本4篇
- 2025-2031年中國帕拉米韋行業(yè)市場競爭格局及發(fā)展趨勢預測報告
- 理療儀行業(yè)市場發(fā)展現(xiàn)狀及前景趨勢與投資分析研究報告(2024-2030版)
- 2024-2028年中國NGB網絡建設光通信器件行業(yè)發(fā)展監(jiān)測及投資前景展望報告
- 二零二五年度庭院門定制與安裝合同4篇
- 2025年度個人出租倉庫租賃合同(冷鏈物流專用)4篇
- 2024年馬關縣人民醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 2025年虛擬現(xiàn)實與增強現(xiàn)實技術研發(fā)與應用居間合同3篇
- 二零二五年度冬季清雪作業(yè)風險評估與處理合同4篇
- 2025版文化旅游紀念品門店承包經營合同4篇
- 2024年??谑羞x調生考試(行政職業(yè)能力測驗)綜合能力測試題及答案1套
- 六年級數(shù)學質量分析及改進措施
- 一年級下冊數(shù)學口算題卡打印
- 2024年中科院心理咨詢師新教材各單元考試題庫大全-下(多選題部分)
- 真人cs基于信號發(fā)射的激光武器設計
- 【閱讀提升】部編版語文五年級下冊第三單元閱讀要素解析 類文閱讀課外閱讀過關(含答案)
- 四年級上冊遞等式計算練習200題及答案
- 法院后勤部門述職報告
- 2024年國信證券招聘筆試參考題庫附帶答案詳解
- 道醫(yī)館可行性報告
- 視網膜中央靜脈阻塞護理查房課件
評論
0/150
提交評論