




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024年江蘇省南通市如皋市白蒲中學八年級下冊數(shù)學期末經(jīng)典試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.已知四邊形ABCD,有以下4個條件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.從這4個條件中選2個,不能判定這個四邊形是平行四邊形的是()A.①② B.①③ C.①④ D.②④2.均勻地向一個容器注水,最后將容器注滿在注水過程中,水的高度h隨時間t的變化規(guī)律如圖所示,這個容器的形狀可能是A. B. C. D.3.已知一次函數(shù)()的圖像與兩坐標軸所圍成的三角形的面積等于,則該一次函數(shù)表達式為()A. B. C. D.4.小明和小華是同班同學,也是鄰居,某日早晨,小明7:40先出發(fā)去學校,走了一段后,在途中停下吃了早餐,后來發(fā)現(xiàn)上學時間快到了,就跑步到學校;小華離家后直接乘公共汽車到了學校.如圖是他們從家到學校已走的路程s(米)和所用時間t(分鐘)的關系圖.則下列說法中①小明家與學校的距離1200米;②小華乘坐公共汽車的速度是240米/分;③小華乘坐公共汽車后7:50與小明相遇;④小華的出發(fā)時間不變,當小華由乘公共汽車變?yōu)榕懿?,且跑步的速度?00米/分時,他們可以同時到達學校.其中正確的個數(shù)是()A.1個 B.2個C.3個 D.4個5.某水資源保護組織對邢臺某小區(qū)的居民進行節(jié)約水資源的問卷調查.某居民在問卷的選項代號上畫“√”,這個過程是收集數(shù)據(jù)中的()A.確定調查范圍 B.匯總調查數(shù)據(jù)C.實施調查 D.明確調查問題6.某儲運部緊急調撥一批物資,調進物資共用4小時,調進物資2小時后開始調出物資(調進物資與調出物資的速度均保持不變).儲運部庫存物資S(噸)與時間t(小時)之間的函數(shù)關系如圖所示,這批物資從開始調進到全部調出需要的時間是()A.4小時 B.4.4小時 C.4.8小時 D.5小時7.無論a取何值,關于x的函數(shù)y=﹣x+a2+1的圖象都不經(jīng)過()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,是一鋼架,且,為使鋼架更加牢固,需在其內部添加-一些鋼管、、,添加的鋼管都與相等,則最多能添加這樣的鋼管()A.根 B.根 C.根 D.無數(shù)根9.下列各式由左邊到右邊的變形中,屬于分解因式的是()A. B.C. D.10.明明家與學校的圖書館和食堂在同一條直線上,食堂在家和圖書館之間。一天明明先去食堂吃了早餐,接著去圖書館看了一會書,然后回家。如圖反應了這個過程中明明離家的距離y與時間x之間的對應關系,下列結論:①明明從家到食堂的平均速度為0.075km/min;②食堂離圖書館0.2km;③明明看書用了30min;④明明從圖書館回家的平均速度是0.08km/min,其中正確的個數(shù)是()A.1個 B.2個 C.3個 D.4個二、填空題(每小題3分,共24分)11.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.12.如圖,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依據(jù)是“_____”.13.如圖,線段AB=10,點P在線段AB上,在AB的同側分別以AP、BP為邊長作正方形APCD和BPEF,點M、N分別是EF、CD的中點,則MN的最小值是_______.14.設是滿足不等式的正整數(shù),且關于的二次方程的兩根都是正整數(shù),則正整數(shù)的個數(shù)為_______.15.如圖,四邊形ABCD是菱形,AC=8,DB=6,DH⊥AB于點H,則DH=_____.16.已知,則代數(shù)式的值為_____.17.如圖,已知中,,,,是的垂直平分線,交于點,連接,則___18.如圖,直線AB與反比例函數(shù)的圖象交于點A(u,p)和點B(v,q),與x軸交于點C,已知∠ACO=45°,若<u<2,則v的取值范圍是__________.三、解答題(共66分)19.(10分)已知:如圖,在菱形ABCD中,F(xiàn)為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.20.(6分)為了響應國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從2012年7月1日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費,第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費情況如圖的折線圖,請根據(jù)圖象回答下列問題;(1)當用電量是180千瓦時時,電費是__________元;(2)第二檔的用電量范圍是__________;(3)“基本電價”是__________元/千瓦時;(4)小明家8月份的電費是1.5元,這個月他家用電多少千瓦時?21.(6分)為了從甲、乙兩名選手中選拔一人參加射擊比賽,現(xiàn)對他們進行一次測驗,兩個人在相同條件下各射靶10次,為了比較兩人的成績,制作了如下統(tǒng)計圖表:甲、乙射擊成績統(tǒng)計表平均數(shù)中位數(shù)方差命中10環(huán)的次數(shù)甲7乙1(1)請補全上述圖表(請直接在表中填空和補全折線圖);(2)如果規(guī)定成績較穩(wěn)定者勝出,你認為誰將勝出?說明你的理由;(3)如果希望(2)中的另一名選手勝出,根據(jù)圖表中的信息,應該制定怎樣的評判規(guī)則?為什么?22.(8分)在中,,,點是的中點,,垂足為,連接.(1)如圖1,與的數(shù)量關系是__________.(2)如圖2,若是線段上一動點(點不與點、重合),連接,將線段繞點逆時針旋轉得到線段,連接,請猜想三者之間的數(shù)量關系,并證明你的結論;23.(8分)在2019年春季環(huán)境整治活動中,某社區(qū)計劃對面積為的區(qū)域進行綠化.經(jīng)投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為區(qū)域的綠化時,甲隊比乙隊少用5天.(1)求甲、乙兩工程隊每天能完成綠化的面積;(2)設甲工程隊施工天,乙工程隊施工天,剛好完成綠化任務,求關于的函數(shù)關系式;(3)在(2)的條件下,若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.24.(8分)母親節(jié)前夕,某商店從廠家購進A、B兩種禮盒,已知A、B兩種禮盒的單價比為3:4,單價和為210元.(1)求A、B兩種禮盒的單價分別是多少元?(2)該商店購進這兩種禮盒恰好用去9900元,且購進A種禮盒最多36個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?(3)根據(jù)市場行情,銷售一個A鐘禮盒可獲利12元,銷售一個B種禮盒可獲利18元.為奉獻愛心,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使禮盒全部售出后所有方案獲利相同,m值是多少?此時店主獲利多少元?25.(10分)如圖,已知△ABC三個頂點的坐標分別是A(﹣3,1),B(﹣1,﹣1),C(2,2).(1)畫出△ABC關于y軸對稱的△A1B1C1,并寫出點A1,B1,C1的坐標;(2)畫出△ABC繞點B逆時針旋轉90°所得到的△A2B2C2,并求出S.26.(10分)今年上海市政府計劃年內改造1.8萬個分類垃圾箱房,把原有的分類垃圾箱房改造成可以投放“干垃圾、濕垃圾、可回收垃圾、有害垃圾”四類垃圾的新型環(huán)保垃圾箱房.環(huán)衛(wèi)局原定每月改造相同數(shù)量的分類垃圾箱房,為確保在年底前順利完成改造任務,環(huán)衛(wèi)局決定每月多改造250個分類垃圾箱房,提前一個月完成任務.求環(huán)衛(wèi)局每個月實際改造分類垃圾箱房的數(shù)量.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】
根據(jù)平行四邊形的判定方法即可一一判斷;【詳解】A、由①②可以判定四邊形ABCD是平行四邊形;故本選項不符合題意;B、由①③可以判定四邊形ABCD是平行四邊形;故本選項不符合題意;C、由①④無法判定四邊形ABCD是平行四邊形,可能是等腰梯形,故本選項符合題意;D、由②④可以判定四邊形ABCD是平行四邊形;故本選項不符合題意;故選:C.【點睛】本題考查平行四邊形的判定,解題的關鍵是熟練掌握平行四邊形的判定方法,屬于中考??碱}型.2、D【解析】
根據(jù)每一段函數(shù)圖象的傾斜程度,反映了水面上升速度的快慢,再觀察容器的粗細,作出判斷即可.【詳解】注水量一定,從圖中可以看出,OA上升較快,AB上升較慢,BC上升最快,由此可知這個容器下面容積較大,中間容積最大,上面容積最小,故選D.【點睛】本題考查了函數(shù)的圖象,正確理解函數(shù)的圖象所表示的意義是解題的關鍵,注意容器粗細和水面高度變化的關系.3、B【解析】
首先求出直線()與兩坐標軸的交點坐標,然后根據(jù)三角形面積等于4,得到一個關于x的方程,求出方程的解,即可得直線的表達式.【詳解】直線()與兩坐標軸的交點坐標為(0,-4),(,0)∵直線()與兩坐標軸所圍成的三角形的面積等于∴解得:k=±2,∵,∴k=﹣2則一次函數(shù)的表達式為故選B【點睛】本題考查了利用待定系數(shù)法求一次函數(shù)解析式,熟練掌握待定系數(shù)法是解答本題的關鍵.4、D【解析】
根據(jù)函數(shù)圖象中各拐點的實際意義求解可得.【詳解】①.根據(jù)圖形可知小明家與學校的距離1200米,此選項正確;②.小華到學校的平均速度是1200÷(13?8)=240(米/分),此選項正確;③.(480÷240)+8=10分,所以小華乘坐公共汽車后7:50與小明相遇,此選項正確;④.小華跑步的平均速度是1200÷(20?8)=100(米/分)他們可以同時到達學校,此選項正確;故選:D.【點睛】此題考查函數(shù)圖象,看懂圖中數(shù)據(jù)是解題關鍵根據(jù).5、C【解析】
根據(jù)收集數(shù)據(jù)的幾個階段可以判斷某居民在問卷上的選項代號畫“√”,屬于哪個階段,本題得以解決.【詳解】解:某居民在問卷上的選項代號畫“√”,這是數(shù)據(jù)中的實施調查階段,故選:C.【點睛】本題考查調查收集數(shù)據(jù)的過程與方法,解題的關鍵是明確收集數(shù)據(jù)的幾個階段.6、B【解析】分析:由圖中可以看出,2小時調進物資30噸,調進物資共用4小時,說明物資一共有60噸;2小時后,調進物資和調出物資同時進行,4小時時,物資調進完畢,倉庫還剩10噸,說明調出速度為:(60-10)÷2噸,需要時間為:60÷25時,由此即可求出答案.解答:解:物資一共有60噸,調出速度為:(60-10)÷2=25噸,需要時間為:60÷25=2.4(時)∴這批物資從開始調進到全部調出需要的時間是:2+2.4=4.4小時.7、C【解析】
根據(jù)題目中的函數(shù)解析式和一次函數(shù)的性質可以解答本題.【詳解】解:∵y=﹣x+a2+1,k=﹣1<0,a2+1≥1>0,∴函數(shù)y=﹣x+a2+1經(jīng)過第一、二、四象限,不經(jīng)過第三象限,故選:C.【點睛】本題考查一次函數(shù)的性質,解答本題的關鍵是明確題意,利用一次函數(shù)的性質解答.8、B【解析】
因為每根鋼管的長度相等,可推出圖中的5個三角形都是等腰三角形,再根據(jù)等腰三角形的性質和三角形的外角性質,計算出最大的∠OQB的度數(shù)(必須≤90°),就可得出鋼管的根數(shù).【詳解】解:如圖所示,∠AOB=15°,∵OE=FE,∴∠OFE=∠AOB=15°,∴∠GEF=15°×2=30°,∵EF=GF,所以∠EGF=30°,∴∠GFH=15°+30°=45°,∵GH=GF,∴∠GHF=45°,∠HGA=45°+15°=60°,∵GH=HQ,∴∠GQH=60°,∠QHB=60°+15°=75°,∵QH=QB,∴∠QBH=75°,故∠OQB=180°-15°-75°=90°,再作與BQ相等的線段時,90°的角不能是底角,則最多能作出的鋼管是:EF、FG、GH、HQ、QB,共有5根.故選B.【點睛】本題考查了等腰三角形的性質和三角形外角的性質,弄清題意,發(fā)現(xiàn)規(guī)律,正確求得圖中各角的度數(shù)是解題的關鍵.9、B【解析】
根據(jù)分解因式的定義:把一個多項式化為幾個最簡整式的乘積的形式,這種變形叫做把這個因式分解,逐一判定即可.【詳解】A選項,不屬于分解因式,錯誤;B選項,屬于分解因式,正確;C選項,不屬于分解因式,錯誤;D選項,不能確定是否為0,錯誤;故選:B.【點睛】此題主要考查對分解因式的理解,熟練掌握,即可解題.10、D【解析】
根據(jù)函數(shù)圖象判斷即可.【詳解】解:明明從家到食堂的平均速度為:0.6÷8=0.075km/min,①正確;食堂離圖書館的距離為:0.8-0.6=0.2km,②正確;明明看書的時間:58-28=30min,③正確;明明從圖書館回家的平均速度是:0.8÷(68-58)=0.08km/min,④正確.故選D.【點睛】本題考查了函數(shù)圖象的讀圖能力.要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結合題意正確計算是解題的關鍵.二、填空題(每小題3分,共24分)11、140°【解析】
如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.12、HL【解析】分析:需證△BCD和△CBE是直角三角形,可證△BCD≌△CBE的依據(jù)是HL.詳解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案為HL.點睛:本題考查全等三角形判定定理中的判定直角三角形全等的HL定理.13、2【解析】
設MN=y,PC=x,根據(jù)正方形的性質和勾股定理列出y1關于x的二次函數(shù)關系式,求二次函數(shù)的最值即可.【詳解】作MG⊥DC于G,如圖所示:設MN=y,PC=x,根據(jù)題意得:GN=2,MG=|10-1x|,在Rt△MNG中,由勾股定理得:MN1=MG1+GN1,即y1=21+(10-1x)1.∵0<x<10,∴當10-1x=0,即x=2時,y1最小值=12,∴y最小值=2.即MN的最小值為2;故答案為:2.【點睛】本題考查了正方形的性質、勾股定理、二次函數(shù)的最值.熟練掌握勾股定理和二次函數(shù)的最值是解決問題的關鍵.14、1個.【解析】
首先把方程進行整理,根據(jù)方程有兩個正整數(shù)根,說明根的判別式△=b2?4ac≥0,由此可以求出m的取值范圍,表達出兩根,然后根據(jù)方程有兩個正整數(shù)根以及m的取值范圍得出m為完全平方數(shù)即可.【詳解】解:將方程整理得:x2?(2m+4)x+m2+4=0,∴,,∵兩根都是正整數(shù),且是滿足不等式的正整數(shù),∴m為完全平方數(shù)即可,∴m=1,4,9,16,25,36,49,共1個,故答案為:1.【點睛】此題主要考查了含字母系數(shù)的一元二次方程,確定m為完全平方數(shù)是解決本題的關鍵.15、【解析】分析:本題考查的是菱形的面積問題,菱形的面積即等于對角線積的一半,也等于底乘以高.解析:∵四邊形ABCD是菱形,AC=8,DB=6,∴菱形面積為24,設AC與BD相較于點O,∴AC⊥BD,OA=4,OB=3,∴AB=5,又因為菱形面積為AB×DH=24,∴DH=.故答案為.16、3【解析】
把已知值代入,根據(jù)二次根式的性質計算化簡,靈活運用完全平方公式.【詳解】解:因為所以【點睛】二次根式的化簡求值.17、5【解析】
由是的垂直平分線可得AD=CD,可得∠CAD=∠ACD,利用勾股定理逆定理可得∠ACB=90°由等角的余角相等可得:∠DCB=∠B,可得CD=BD,可知CD=BD=AD=【詳解】解:∵是的垂直平分線∴AD=CD∴∠CAD=∠ACD∵,,又∵∴∴∠ACB=90°∵∠ACD+∠DCB=90°,∠CAB+∠B=90°∴∠DCB=∠B∴CD=BD∴CD=BD=AD=故答案為5【點睛】本題考查了線段垂直平分線、勾股定理逆定理以及等腰三角形的性質,掌握勾股定理逆定理及利用等腰三角形求線段是解題的關鍵.18、2<v<1【解析】
由∠ACO=45°可設直線AB的解析式為y=-x+b,由點A、B在反比例函數(shù)圖象上可得出p=,q=,代入點A、B坐標中,再利用點A、B在直線AB上可得=﹣u+b①,=﹣v+b②,兩式做差即可得出u關于v的關系式,結合u的取值范圍即可得答案.【詳解】∵∠ACO=45°,直線AB經(jīng)過二、四象限,∴設直線AB的解析式為y=﹣x+b.∵點A(u,p)和點B(v,q)為反比例函數(shù)的圖象上的點,∴p=,q=,∴點A(u,),點B(v,).∵點A、B為直線AB上的點,∴=﹣u+b①,=﹣v+b②,①﹣②得:,即.∵<u<2,∴2<v<1,故答案為:2<v<1.【點睛】本題考查反比例函數(shù)與一次函數(shù)的綜合,根據(jù)∠ACO=45°設出直線AB解析式,熟練掌握反比例函數(shù)圖象上的點的坐標特征是解題關鍵.三、解答題(共66分)19、(1)1;(1)見解析.【解析】試題分析:(1)根據(jù)菱形的對邊平行可得AB∥CD,再根據(jù)兩直線平行,內錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據(jù)等角對等邊的性質可得CM=DM,再根據(jù)等腰三角形三線合一的性質可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(1)先利用“邊角邊”證明△CEM和△CFM全等,根據(jù)全等三角形對應邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據(jù)等角對等邊的性質可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據(jù)全等三角形對應邊相等可得GF=DF,最后結合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延長AB交DF的延長線于點G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由圖形可知,GM=GF+MF,
∴AM=DF+ME.20、(1)128;(2)182<x≤442;(3)2.6;(4)這個月他家用電422千瓦時.【解析】試題分析:(1)通過函數(shù)圖象可以直接得出用電量為182千瓦時,電費的數(shù)量;(2)從函數(shù)圖象可以看出第二檔的用電范圍;(3)運用總費用÷總電量就可以求出基本電價;(4)結合函數(shù)圖象可以得出小明家8月份的用電量超過442千瓦時,先求出直線BC的解析式就可以得出結論.解:(1)由函數(shù)圖象,得當用電量為182千瓦時,電費為:128元.故答案為128;(2)由函數(shù)圖象,得設第二檔的用電量為x千瓦時,則182<x≤442.故答案為182<x≤442;(3)基本電價是:128÷182=2.6;故答案為2.6(4)設直線BC的解析式為y=kx+b,由圖象,得,解得:,y=2.9x﹣121.4.y=1.4時,x=422.答:這個月他家用電422千瓦時.21、(1)見解析;(2)甲勝出;(3)見解析.【解析】試題分析:(1)根據(jù)折線統(tǒng)計圖列舉出乙的成績,計算出甲的中位數(shù),方差,以及乙平均數(shù),中位數(shù)及方差,補全即可;
(2)計算出甲乙兩人的方差,比較大小即可做出判斷;
(3)希望甲勝出,規(guī)則改為9環(huán)與10環(huán)的總數(shù)大的勝出,因為甲9環(huán)與10環(huán)的總數(shù)為4環(huán).試題解析:(1)如圖所示.甲、乙射擊成績統(tǒng)計表平均數(shù)中位數(shù)方差命中10環(huán)的次數(shù)甲7740乙77.55.41(2)由甲的方差小于乙的方差,甲比較穩(wěn)定,故甲勝出.(3)如果希望乙勝出,應該制定的評判規(guī)則為:平均成績高的勝出;如果平均成績相同,則隨著比賽的進行,發(fā)揮越來越好者或命中滿環(huán)(10環(huán))次數(shù)多者勝出.因為甲、乙的平均成績相同,隨著比賽的進行,乙的射擊成績越來越好(回答合理即可).22、(1)DE=BC;(2)【解析】
(1)由∠ACB=90°,∠A=30°得到∠B=60°,根據(jù)直角三角形斜邊上中線性質得到DB=DC,則可判斷△DCB為等邊三角形,由于DE⊥BC,可得DE=BD=BC;(2)根據(jù)旋轉的性質得到∠PDF=60°,DP=DF,易得∠CDP=∠BDF,則可根據(jù)“SAS”判斷△DCP≌△DBF,則CP=BF,利用CP+BP=BC,DE=BC可得到DE=(BF+BP).【詳解】解:(1)∵∠ACB=90°,∠A=30°,
∴∠B=60°,
∵點D是AB的中點,
∴DB=DC,
∴△DCB為等邊三角形,
∵DE⊥BC,
∴DE=BC;
故答案為DE=BD=BC.(2)DE=(BF+BP).理由如下:
∵線段DP繞點D逆時針旋轉60°,得到線段DF,
∴∠PDF=60°,DP=DF,
而∠CDB=60°,
∴∠CDB-∠PDB=∠PDF-∠PDB,
∴∠CDP=∠BDF,
在△DCP和△DBF中
,
∴△DCP≌△DBF(SAS),
∴CP=BF,
而CP=BC-BP,
∴BF+BP=BC,
∵DE=BC,
∴DE=(BF+BP);故答案為DE=(BF+BP).【點睛】本題考查了全等三角形的判定與性質:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的對應邊相等.也考查了等邊三角形的判定與性質以及含30度的直角三角形三邊的關系.23、(1)甲、乙兩工程隊每天能完成綠化面積分別為和;(2);(3)甲工程隊施工15天,乙工程隊施工10天,則施工總費用最低,最低費用為11.5萬.【解析】
(1)設出兩隊的每天綠化的面積,以兩隊工作時間為等量構造分式方程;(2)以(1)為基礎表示甲乙兩隊分別工作x天、y天的工作總量,工作總量和為1600;(3)用甲乙兩隊施工的總天數(shù)不超過25天確定自變量x取值范圍,用x表示總施工費用,根據(jù)一次函數(shù)增減性求得最低費用.【詳解】解:(1)設乙工程隊每天能完成綠化的面積為,則甲工程隊每天能完成綠化面積為.依題意得:,解得經(jīng)檢驗:是原方程的根.答:甲、乙兩工程隊每天能完成綠化面積分別為和.(2)由(1)得:(3)由題意可知:即解得總費用值隨值的增大而增大.當天時,答:甲工程隊施工15天,乙工程隊施工10天,則施工總費用最低,最低費用為11.5萬.【點睛】此題考查一次函數(shù)的應用,分式方程的應用,解題關鍵在于理解題意列出方程.
錯因分析:中等題.失分的原因是:1.不能根據(jù)題意正確列出方程,解方程時出錯;2.沒有正確找出一次函數(shù)關系;3.不能利用一次函數(shù)的增減性求最小
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高校輔導員專業(yè)能力與道德素養(yǎng)的綜合測評試題及答案
- 2024微生物檢驗技師考試的明確目標試題及答案
- 2025年注會考試中的有效溝通與合作試題及答案
- 工廠裝修方案范本
- 微生物檢驗技師復習指南試題及答案
- 項目管理風格的多樣性與挑戰(zhàn)試題及答案
- 項目管理人員資格考試可行性試題及答案
- 2025年會計信息系統(tǒng)發(fā)展試題及答案
- 項目價值評估的重要性考點試題及答案
- 2024年項目管理專業(yè)人士考試知識要點試題及答案
- 環(huán)境毒理學考試整理重點
- GH-T 1388-2022 脫水大蒜標準規(guī)范
- (完整版)軟件工程導論(第六版)張海藩牟永敏課后習題答案
- 金屬材料成形工藝及控制課件:軋制理論與工藝 (2)-
- 《我與集體共成長》的主題班會
- 六年級趣味數(shù)學活動課堂課件
- imo中的問題定理與方法
- 新能源汽車運用與維修專業(yè)人才培養(yǎng)方案
- 氨吹脫塔單元設計示例
- 中國移動-安全-L3
- GB/T 42314-2023電化學儲能電站危險源辨識技術導則
評論
0/150
提交評論