2024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答 第28講 避免漏解的奧秘_第1頁(yè)
2024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答 第28講 避免漏解的奧秘_第2頁(yè)
2024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答 第28講 避免漏解的奧秘_第3頁(yè)
2024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答 第28講 避免漏解的奧秘_第4頁(yè)
2024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答 第28講 避免漏解的奧秘_第5頁(yè)
已閱讀5頁(yè),還剩13頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGEPAGE72024年九年級(jí)初中數(shù)學(xué)競(jìng)賽輔導(dǎo)講義及習(xí)題解答第二十八講避免漏解的奧秘“會(huì)而不對(duì),對(duì)而不全”,這是許多同學(xué)在解題時(shí)無(wú)法避免而又屢犯不止的錯(cuò)誤,提高解題周密性,避免漏解的奧秘在于:掌握分類討論法,學(xué)會(huì)分類討論.分類討論就是按照一定的標(biāo)準(zhǔn),把研究對(duì)象分成幾個(gè)部分或幾種情況,然后逐個(gè)加以解決,最后予以總結(jié)作出結(jié)論的思想方法,其實(shí)質(zhì)是化整為零、各個(gè)擊破的轉(zhuǎn)化策略.解題時(shí)何時(shí)需要進(jìn)行分類?一般來(lái)說(shuō),當(dāng)問(wèn)題包含的因素發(fā)生變化,問(wèn)題結(jié)果也相應(yīng)發(fā)生變化,我們就需要對(duì)這一關(guān)鍵因素分類討論,怎樣進(jìn)行正確分類?分類的基本要求是不重復(fù)、不遺漏,每次分類必須保持同一的分類標(biāo)準(zhǔn),多級(jí)討論,逐級(jí)進(jìn)行.【例題求解】【例1】四條線段的長(zhǎng)分別為9,5,,1(其中為正實(shí)數(shù)),用它們拼成兩個(gè)直角三角形,且AB與CD是其中的兩條線段(如圖),則可取值的個(gè)數(shù)為.思路點(diǎn)撥AB是四條線段中最長(zhǎng)的,故AB=9或AB=,又CD長(zhǎng)不定,所以應(yīng)就AB、CD的取值作全面討論.注:初中數(shù)學(xué)常見的分類方法有:(1)按定義、性質(zhì)、法則、公式分類;(2)對(duì)參數(shù)分類;(3)按圖形位置分類;(4)按圖形特征分類;(5)按余數(shù)分類.注:參數(shù)是較為常見的分類對(duì)象,因?yàn)閰?shù)的不同取值,可能導(dǎo)致不同的運(yùn)算結(jié)果,或者必須使用不同的方法去解決,這一分類方法在方程、不等式、函數(shù)中有廣泛的應(yīng)用.【例2】方程的所有整數(shù)解的個(gè)數(shù)是()A.2B.3C.4D.5思路點(diǎn)撥這是一個(gè)特殊的冪指數(shù)方程問(wèn)題,根據(jù)冪指數(shù)的意義,可將原問(wèn)題分成三個(gè)并列的簡(jiǎn)單問(wèn)題求解:(1)非零實(shí)數(shù)的零次冪等于1;(2)1的任何次冪等于1;(3)的偶次冪等于1.【例3】試確定一切有理數(shù),使得關(guān)于的方程有根且只有整數(shù)根.思路點(diǎn)撥根據(jù)方程定義,是否為零影響方程的次數(shù),這是質(zhì)的不同,解法也不同,所以,應(yīng)對(duì)r=0及≠0兩種情況分類求解.【例4】已知一三角形紙片ABC,面積為25,BC邊的長(zhǎng)為10,∠B和∠C都為銳角,M為AB邊上的一動(dòng)點(diǎn)(M與點(diǎn)A、B不重合).過(guò)點(diǎn)M作MN∥BC,交AC于點(diǎn)N.設(shè)MN=.(1)用表示△AMN的面積S△AMN;(2)用△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AM、AN落在四邊形BCNM所在的平面內(nèi)),設(shè)點(diǎn)A落在平面BCNM內(nèi)的點(diǎn)為A′,△A′MN與四邊形BCNM重疊部分的面積為.①試求出關(guān)于的函數(shù)關(guān)系式,并寫出自變量的取值范圍;②當(dāng)為何值時(shí)重疊部分的面積最大,最大為多少?思路點(diǎn)撥折疊△AMN,A點(diǎn)位置不確定,可能在△ABC內(nèi)或在BC邊上或在△ABC外,故需按以上三種情況分別求出關(guān)于的函數(shù)關(guān)系式,進(jìn)而求出的最大值.注:有關(guān)平面幾何問(wèn)題,經(jīng)常按圖形相互之間的位置進(jìn)行分類,因?yàn)閳D形存在不同的位置關(guān)系,其解答結(jié)果可能不同,也可能需要使用不同的方法解決,初中平面幾何按位置關(guān)系分類,最終一般都?xì)w結(jié)為點(diǎn)、直線和圓之間的位置關(guān)系.【例5】已知⊙Ol與⊙O2外切,⊙Ol的半徑R=2,設(shè)⊙O2的半徑是r.(1)如果⊙Ol與⊙O2的圓心距d=4,求r的值;(2)如果⊙Ol、⊙O2的公切線中有兩條互相垂直,并且r≤R,求r的值.思路點(diǎn)撥題中沒(méi)有給出圖形,題設(shè)中外切兩圓的公切線中有兩條互相垂直,情況不惟一,故應(yīng)分類討論.注:中考?jí)狠S題分類討論有以下常見情形:(1)由點(diǎn)的不確定定引起的分類討論;(2)由圖形全等或相似的對(duì)應(yīng)關(guān)系的不確定性引起的分類討論;(3)由圖形運(yùn)動(dòng)導(dǎo)致圖形之間位置發(fā)生變化引起的分類討論.學(xué)力訓(xùn)練1.已知m為實(shí)數(shù),如果函數(shù)的圖象與軸只有一個(gè)交點(diǎn),那么m的取值為.2.若實(shí)數(shù)、滿足,,則的值為.3.若半徑為5和4的兩個(gè)圓相交,且公共弦長(zhǎng)為6,則它們的圓心距等于.4.已知⊙O和不在⊙O上的一點(diǎn)P,過(guò)P直線交⊙O于A、B點(diǎn),若PA·PB=4,OP=5,則⊙O的半徑為.5.和拋物線只有一個(gè)公共點(diǎn)(-1,-1)的直線解析式為()A.B.C.或D.6.若線段AB兩端點(diǎn)到直線的距離分別為4和8,則AB的中點(diǎn)到直線的距離是()A.2B.4C.6D.2或67.點(diǎn)A(-4,0),B(2,0)是坐標(biāo)平面上兩定點(diǎn),C是的圖象上的動(dòng)點(diǎn),則滿足上述條件的直角△ABC可以畫出()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)8.如圖,在直角梯形ABCD中,AB=7,AD=2,BC=3,如果邊AB上的點(diǎn)P使得以P、A、D為頂點(diǎn)的三角形和以P、B、C為頂點(diǎn)的三角形相似,那么這樣的P點(diǎn)有()A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)9.已知關(guān)于的方程.(1)求證:無(wú)論是取何實(shí)數(shù)值,方程總有實(shí)數(shù)根;(2)若等腰三角形ABC的一邊長(zhǎng),另兩邊長(zhǎng)為、恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).10.已知:如圖,拋物線C1經(jīng)過(guò)A,B,C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.(1)求拋物線C1的解析式;(2)求四邊形ABCD的面積;(3)△AOB與△BDE是否相似,如果相似,請(qǐng)予以證明;如果不相似,請(qǐng)說(shuō)明理由;(4)設(shè)拋物線C1的對(duì)稱軸與x軸交于點(diǎn)F,另一條拋物線C2經(jīng)過(guò)點(diǎn)E(拋物線C2與拋物線C1不重合),且頂點(diǎn)為M(a,b),對(duì)稱軸與x軸相交于點(diǎn)G,且以M,G,E為頂點(diǎn)的三角形與以D,E,F(xiàn)為頂點(diǎn)的三角形全等,求a,b的值(只需寫出結(jié)果,不必寫出解答過(guò)程)11.以O(shè)為圓心的兩個(gè)同心圓的半徑分別為9cm和5cm,⊙O′與這兩個(gè)圓都相切,則⊙O′的半徑是.12.在△ABC中,AB=AC,AB的中垂線與AC所在直線相交所得的銳角為50°,則底角B的大小為.13.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,若以C為圓心,R為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn),則R的取值范圍是.14.已知點(diǎn)A(0,6),B(3,0),C(2,0),M(0,m),其中m<6,以M為圓心,MC為半徑作圓,那么當(dāng)m=時(shí),⊙M與直線AB相切.15.關(guān)于的方程有有理根,求整數(shù)是的值.16.華鑫超市對(duì)顧客實(shí)行優(yōu)惠購(gòu)物,規(guī)定如下:(1)若一次購(gòu)物少于200元,則不予優(yōu)惠;(2)若一次購(gòu)物滿200元,但不超過(guò)500元,按標(biāo)價(jià)給予九折優(yōu)惠;(3)若一次購(gòu)物超過(guò)500元,其中500元的部分給予九折優(yōu)惠,超過(guò)500元部分給予八折優(yōu)惠.小明兩次去該超市購(gòu)物,分別付款198元與554元,現(xiàn)在小亮決定一次去購(gòu)買小明分兩次購(gòu)買的同樣多的物品,他需付款多少?17.如圖,已知:△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點(diǎn)在AC上(與點(diǎn)A、C不重合),Q點(diǎn)在BC上.(1)當(dāng)△PQC的面積與四邊形PABQ的面積相等時(shí),求CP的長(zhǎng);(2)當(dāng)△PQC的周長(zhǎng)與四邊形PABQ的周長(zhǎng)相等時(shí),求CP的長(zhǎng);(3)試問(wèn):在AB上是否存在點(diǎn)M,使得△PQM為等腰直角三角形?若不存在,請(qǐng)簡(jiǎn)要說(shuō)明理由;若存在,請(qǐng)求出PQ的長(zhǎng).18.已知關(guān)于的方程(q≥0)的兩個(gè)實(shí)數(shù)根為,且≤.(1)試用含有,的代數(shù)式表示和;(2)求證:≤1≤(3)若以,為坐標(biāo)的點(diǎn)M(,)在△ABC的三條邊上運(yùn)動(dòng),且△ABC頂點(diǎn)的坐標(biāo)分別為A(1,2),B(,1),C(1,1),問(wèn)是否存在點(diǎn)M使+=,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.19.某蔬菜基地種植西紅柿,由歷年市場(chǎng)行情得知,從2月1日起的300天內(nèi),西紅柿市場(chǎng)售價(jià)與上市時(shí)間的關(guān)系用圖甲的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖乙表示的拋物線段表示.(1)寫出圖甲表示的市場(chǎng)售價(jià)與時(shí)間的函數(shù)關(guān)系;寫出圖乙表示的種植成本與時(shí)間的函數(shù)關(guān)系式.(2)認(rèn)定市場(chǎng)售價(jià)減去種植成本為純收益,問(wèn)何時(shí)上市的西紅柿純收益最大?(注:市場(chǎng)售價(jià)和種植成本的單位:元/102㎏,時(shí)間單位:天)參考答案第二十九講由正難則反切入人們習(xí)慣的思維方式是正向思維,即從條件手,進(jìn)行正面的推導(dǎo)和論證,使問(wèn)題得到解決.但有些數(shù)學(xué)問(wèn)題,若直接從正面求解,則思維較易受阻,而“正難則反,順難則逆,直難則曲”是突破思維障礙的重要策略.?dāng)?shù)學(xué)中存在著大量的正難則反的切入點(diǎn).?dāng)?shù)學(xué)中的定義、公式、法則和等價(jià)關(guān)系都是雙向的,具有可逆性;對(duì)數(shù)學(xué)方法而言,特殊與一般、具體與抽象、分析與綜合、歸納與演繹,其思考方向也是可逆的;作為解題策略,當(dāng)正向思考困難時(shí)可逆向思考,直接證明受阻時(shí)可間接證明,探索可能性失敗時(shí)轉(zhuǎn)向考察不可能性.由正難則反切入的具體途徑有:定義、公式、法則的逆用;2.常量與變量的換位;3.反客為主;4.反證法等.【例題求解】【例1】已知滿足,那么的值為.思路點(diǎn)撥視為整體,避免解高次方程求的值.【例2】已知實(shí)數(shù)、、滿足,且求的值.思路點(diǎn)撥顯然求、、的值或?qū)で?、、的關(guān)系是困難的,令,則2002=,原等式就可變形為關(guān)于的一元二次方程,運(yùn)用根與系數(shù)關(guān)系求解.注:(1)人們總習(xí)慣于用凝固的眼光看待常量與變量,認(rèn)為它們涇渭分明,更換不得,實(shí)際上將常量設(shè)為變量,或?qū)⒆兞繒簳r(shí)看作常量,都會(huì)給人以有益的啟示.(2)人的思維活動(dòng)既有“求同”和“定勢(shì)”的方面,又有“求異”和“變通”的方面.求同與求異,定勢(shì)與變通是人的思維個(gè)性的兩極,充分利用知識(shí)和方法的雙向性,是培養(yǎng)思維能力的重要途徑.正難則反在具體的解題中,還表現(xiàn)為下列各種形式:(1)不通分母通分子;(2)不求局部求整體;(3)不先開方先平方;(4)不用直接挖隱含;(5)不算相等算不等;(6)不求動(dòng)態(tài)求靜態(tài)等.【例3】設(shè)、、為非零實(shí)數(shù),且,,,試問(wèn):、、滿足什么條件時(shí),三個(gè)二次方程中至少有一個(gè)方程有不等的實(shí)數(shù)根.思路點(diǎn)撥如從正面考慮,條件“三個(gè)方程中至少有一個(gè)方程有不等的實(shí)數(shù)根”所涉及的情況比較復(fù)雜,但從其反面考慮情況卻十分簡(jiǎn)單,只有一種可能,即三個(gè)方程都沒(méi)有實(shí)數(shù)根,然后從全體實(shí)數(shù)中排除三個(gè)方程都無(wú)實(shí)數(shù)根的、、的取值即可.注:受思維定勢(shì)的消極影響,人們?cè)诮鉀Q有幾個(gè)變量的問(wèn)題時(shí),總抓住主元不放,使有些問(wèn)題的解決較為復(fù)雜,此時(shí)若變換主元,反客為主,問(wèn)題常常能獲得簡(jiǎn)解.【例4】已知一平面內(nèi)的任意四點(diǎn),其中任何三點(diǎn)都不在一條直線上,試問(wèn):是否一定能從這樣的四點(diǎn)中選出三點(diǎn)構(gòu)成一個(gè)三角形,使得這個(gè)三角形至少有一內(nèi)角不大于45°?請(qǐng)證明你的結(jié)論.思路點(diǎn)撥結(jié)論是以疑問(wèn)形式出現(xiàn)的,不妨先假定是肯定的,然后推理.若推出矛盾,則說(shuō)明結(jié)論是否定的;若推不出矛盾,則可考慮去證明結(jié)論是肯定的.【例5】能夠找到這樣的四個(gè)正整數(shù),使得它們中任兩個(gè)數(shù)的積與2002的和都是完全平方數(shù)嗎?若能夠,請(qǐng)舉出一例;若不能夠,請(qǐng)說(shuō)明理由.思路點(diǎn)撥先假設(shè)存在正整數(shù),,,滿足(,=1,2,3,4,m為正整數(shù)).運(yùn)用完全平方數(shù)性質(zhì)、奇偶性分析、分類討論綜合推理,若推出矛盾,則原假設(shè)不成立.注:反證法是從待證命題的結(jié)論的反面出發(fā),進(jìn)行推理,通過(guò)導(dǎo)出矛盾來(lái)判斷待證命題成立的方法,其證明的基本步驟是:否定待證命題的結(jié)論、推理導(dǎo)出矛盾、肯定原命題的結(jié)論.宜用反證法的三題特征是:(1)結(jié)論涉及無(wú)限;(2)結(jié)論涉及唯一性;(3)結(jié)論為否定形式;(4)結(jié)論涉及“至多,至少”;(5)結(jié)論以疑問(wèn)形式出現(xiàn)等.學(xué)力訓(xùn)練1.由小到大排列各分?jǐn)?shù):,,,,,是.2.分解因式=.3.解關(guān)于的方程:(≥)得=.4.的結(jié)果是.5.若關(guān)于的三個(gè)方程,,,中至少有一個(gè)方程有實(shí)根,則m的取值范圍是.6.有甲、乙兩堆小球,如果第一次從甲堆拿出和乙堆同樣多的小球放到乙堆,第二次從乙堆拿出和甲堆剩下的同樣多的小球放到甲堆,如此挪動(dòng)4次后,甲、乙兩堆小球恰好都是16個(gè),那么,甲、乙兩堆最初各有多少個(gè)小球?7.求這樣的正整數(shù),使得方程至少有一個(gè)整數(shù)解.8.某班參加運(yùn)動(dòng)會(huì)的19名運(yùn)動(dòng)員的運(yùn)動(dòng)服號(hào)碼恰是1~19號(hào),這些運(yùn)動(dòng)員隨意地站成一個(gè)圓圈,則一定有順次相鄰的3名運(yùn)動(dòng)員,他們運(yùn)動(dòng)服號(hào)碼之和不小于32,請(qǐng)說(shuō)明理由.9.如正整數(shù)和之和是,則可變?yōu)?,?wèn)能不能用這種方法數(shù)次,將22變成2001?10.證明:如果整系數(shù)二次方程a()有有理根,那么,,中至少有一個(gè)是偶數(shù).11.在ΔABC中是否存在一點(diǎn)P,使得過(guò)P點(diǎn)的任意一直線都將該ΔABC分成等面積的兩部分?為什么?12.求證:形如4n+3的整數(shù)是(n為整數(shù))不能化為兩個(gè)整數(shù)的平方和.13.13位小運(yùn)動(dòng)員,他們著裝的運(yùn)動(dòng)服號(hào)碼分別是1~13號(hào).問(wèn):這13名運(yùn)動(dòng)員能否站成一個(gè)圓圈,使得任意相鄰的兩名運(yùn)動(dòng)員號(hào)碼數(shù)之差的絕對(duì)值都不小于3,且不大于5?如果能,試舉一例;如果不能,請(qǐng)說(shuō)明理由.14.有12位同學(xué)圍成一圈,其中有些同學(xué)手中持有鮮花,鮮花總數(shù)為13束,他們進(jìn)行分花游戲,每次分花按如下規(guī)則進(jìn)行:其中一位手中至少持有兩束鮮花的同學(xué)拿出兩束鮮花分給與其相鄰的左右兩位同學(xué),每人一束.試證:在持續(xù)進(jìn)行這種分花游戲的過(guò)程中,一定會(huì)出現(xiàn)至少有7位同學(xué)手中持有鮮花的情況.參考答案第三十講從創(chuàng)新構(gòu)造入手有些數(shù)學(xué)問(wèn)題直接求解比較困難,可通過(guò)創(chuàng)造性構(gòu)造轉(zhuǎn)化問(wèn)題而使問(wèn)題獲解.所謂構(gòu)造法,就是綜合運(yùn)用各種知識(shí)和方法,依據(jù)問(wèn)題的條件和結(jié)論給出的信息,把問(wèn)題作適當(dāng)?shù)募庸ぬ幚恚畼?gòu)造與問(wèn)題相關(guān)的數(shù)學(xué)模式,揭示問(wèn)題的本質(zhì),從而溝通解題思路的方法.構(gòu)造法是一種創(chuàng)造性思維,是建立在對(duì)問(wèn)題結(jié)構(gòu)特點(diǎn)的深刻認(rèn)識(shí)基礎(chǔ)上的.構(gòu)造法的基本形式是以已知條件為“原料”,以所求結(jié)論為“方向”,構(gòu)造一種新的數(shù)學(xué)形式,初中階段常用的構(gòu)造解題的基本方法有:1.構(gòu)造方程;2.構(gòu)造函數(shù);3.構(gòu)造圖形;4.對(duì)于存在性問(wèn)題,構(gòu)造實(shí)例;5.對(duì)于錯(cuò)誤的命題,構(gòu)造反例;6.構(gòu)造等價(jià)命題等.【例題求解】【例1】設(shè)、、、都為實(shí)數(shù),,滿足,求證:.思路點(diǎn)撥可以從展開已知等式、按比例性質(zhì)變形已知等式等角度嘗試.仔細(xì)觀察已知等式特點(diǎn),、可看作方程的兩根,則,通過(guò)構(gòu)造方程揭示題設(shè)條件與結(jié)論的內(nèi)在規(guī)律,解題思路新穎而深刻. 注:一般說(shuō)來(lái),構(gòu)造法包含下述兩層意思:利用抽象的普遍性,把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)模型;利用具體問(wèn)題的特殊性,給所解決的問(wèn)題設(shè)計(jì)一個(gè)框架,強(qiáng)調(diào)數(shù)學(xué)應(yīng)用的數(shù)學(xué)建模是前一層意思的代表,而后一層意思的“框架”含義更為廣泛,如方程、函數(shù)、圖形、“抽屜”等.【例2】求代數(shù)式的最小值.思路點(diǎn)撥用一般求最值的方法很難求出此代數(shù)式的最小值.,于是問(wèn)題轉(zhuǎn)化為:在軸上求一點(diǎn)C(1,0),使它到兩點(diǎn)A(一1,1)和B(2,3)的距離和(CA+CB)最小,利用對(duì)稱性可求出C點(diǎn)坐標(biāo).這樣,通過(guò)構(gòu)造圖形而使問(wèn)題獲解.【例3】已知、為整數(shù),方程的兩根都大于且小于0,求和的值.思路點(diǎn)撥利用求根公式,解不等式組求出、的范圍,這是解本例的基本思路,解法繁難.由于二次函數(shù)與二次方程有深刻的內(nèi)在聯(lián)系,構(gòu)造函數(shù),令,從討論拋物線與軸交點(diǎn)在與0之間所滿足的約束條件入手.【例4】如圖,在矩形ABCD中,AD=,AB=,問(wèn):能否在Ab邊上找一點(diǎn)E,使E點(diǎn)與C、D的連線將此矩形分成三個(gè)彼此相似的三角形?若能找到,這樣的E點(diǎn)有幾個(gè)?若不能找到,請(qǐng)說(shuō)明理由.思路點(diǎn)撥假設(shè)在AB邊上存在點(diǎn)E,使Rt△ADE∽R(shí)t△BEC∽R(shí)t△ECD,又設(shè)AE=,則,即,于是將問(wèn)題轉(zhuǎn)化為關(guān)于的一元二次方程是否有實(shí)根,在一定條件下有幾個(gè)實(shí)根的研究,通過(guò)構(gòu)造方程解決問(wèn)題.【例5】試證:世界上任何6個(gè)人,總有3人彼此認(rèn)識(shí)或者彼此不認(rèn)識(shí).思路點(diǎn)撥構(gòu)造圖形解題,我們把“人”看作“點(diǎn)”,把2個(gè)人之間的關(guān)系看作染成顏色的線段.比如2個(gè)人彼此認(rèn)識(shí)就把連接2個(gè)人的對(duì)應(yīng)點(diǎn)的線段染成紅色;2個(gè)人彼此不認(rèn)識(shí),就把相應(yīng)的線段染成藍(lán)色,這樣,有3個(gè)人彼此認(rèn)識(shí)就是存在一個(gè)3邊都是紅色的三角形,否則就是存在一個(gè)3邊都是藍(lán)色的三角形,這樣本題就化作:已知有6個(gè)點(diǎn),任何3點(diǎn)不共線,每2點(diǎn)之間用線段連結(jié)起來(lái),并染上紅色或藍(lán)色,并且一條邊只能染成一種顏色.證明:不管怎么染色,總可以找出三邊同色的三角形.注:“數(shù)缺形時(shí)少直觀,形缺少時(shí)難入微”數(shù)形互助是一種重要的思想方法,主要體現(xiàn)在:(1)幾何問(wèn)題代數(shù)化;(2)利用圖形圖表解代數(shù)問(wèn)題;(3)構(gòu)造函數(shù),借用函數(shù)圖象探討方程的解.利用代數(shù)法解幾何題,往往是以較少的量的字母表示相關(guān)的幾何量,根據(jù)幾何圖形性質(zhì)列出代數(shù)式或方程(組),再進(jìn)行計(jì)算或證明.特別地,證明幾何存在性的問(wèn)題可構(gòu)造方程,利用一元二次方程必定有解的的的代數(shù)模型求證;應(yīng)用為韋達(dá)定理,討論幾何圖形位置的可能性.有些問(wèn)題可通過(guò)改變形式或換個(gè)說(shuō)法,構(gòu)造等價(jià)命題或輔助命題,使

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論