版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆四川省成都市雙流區(qū)雙流中學(xué)高考數(shù)學(xué)倒計時模擬卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的展開式中第項與第項的二項式系數(shù)相等,則奇數(shù)項的二項式系數(shù)和為().A. B. C. D.2.在中,為中點,且,若,則()A. B. C. D.3.的展開式中,滿足的的系數(shù)之和為()A. B. C. D.4.已知函數(shù),關(guān)于的方程R)有四個相異的實數(shù)根,則的取值范圍是(
)A. B. C. D.5.函數(shù)的圖象與軸交點的橫坐標(biāo)構(gòu)成一個公差為的等差數(shù)列,要得到函數(shù)的圖象,只需將的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位6.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知數(shù)列中,,且當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,.則此數(shù)列的前項的和為()A. B. C. D.8.設(shè)正項等差數(shù)列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.369.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.10.將函數(shù)圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,再將圖像向左平移個單位長度,得到函數(shù)的圖象,則函數(shù)圖象的一個對稱中心為()A. B. C. D.11.已知,,分別是三個內(nèi)角,,的對邊,,則()A. B. C. D.12.已知,且,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.春節(jié)期間新型冠狀病毒肺炎疫情在湖北爆發(fā),為了打贏疫情防控阻擊戰(zhàn),我省某醫(yī)院選派2名醫(yī)生,6名護(hù)士到湖北、兩地參加疫情防控工作,每地一名醫(yī)生,3名護(hù)士,其中甲乙兩名護(hù)士不到同一地,共有__________種選派方法.14.已知多項式滿足,則_________,__________.15.已知數(shù)列的前項和為,,則滿足的正整數(shù)的值為______.16.已知拋物線的焦點為,斜率為2的直線與的交點為,若,則直線的方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設(shè)點P的坐標(biāo)為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.18.(12分)如圖,在中,,的角平分線與交于點,.(Ⅰ)求;(Ⅱ)求的面積.19.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點,,若,求的最小值.20.(12分)已知函數(shù),.(1)求曲線在點處的切線方程;(2)求函數(shù)的極小值;(3)求函數(shù)的零點個數(shù).21.(12分)傳染病的流行必須具備的三個基本環(huán)節(jié)是:傳染源、傳播途徑和人群易感性.三個環(huán)節(jié)必須同時存在,方能構(gòu)成傳染病流行.呼吸道飛沫和密切接觸傳播是新冠狀病毒的主要傳播途徑,為了有效防控新冠狀病毒的流行,人們出行都應(yīng)該佩戴口罩.某地區(qū)已經(jīng)出現(xiàn)了新冠狀病毒的感染病人,為了掌握該地區(qū)居民的防控意識和防控情況,用分層抽樣的方法從全體居民中抽出一個容量為100的樣本,統(tǒng)計樣本中每個人出行是否會佩戴口罩的情況,得到下面列聯(lián)表:戴口罩不戴口罩青年人5010中老年人2020(1)能否有的把握認(rèn)為是否會佩戴口罩出行的行為與年齡有關(guān)?(2)用樣本估計總體,若從該地區(qū)出行不戴口罩的居民中隨機抽取5人,求恰好有2人是青年人的概率.附:0.1000.0500.0100.0012.7063.8416.63510.82822.(10分)如圖,三棱柱中,側(cè)面為菱形,.(1)求證:平面;(2)若,求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】因為的展開式中第4項與第8項的二項式系數(shù)相等,所以,解得,所以二項式中奇數(shù)項的二項式系數(shù)和為.考點:二項式系數(shù),二項式系數(shù)和.2、B【解析】
選取向量,為基底,由向量線性運算,求出,即可求得結(jié)果.【詳解】,,,,,.故選:B.【點睛】本題考查了平面向量的線性運算,平面向量基本定理,屬于基礎(chǔ)題.3、B【解析】
,有,,三種情形,用中的系數(shù)乘以中的系數(shù),然后相加可得.【詳解】當(dāng)時,的展開式中的系數(shù)為.當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;當(dāng),時,系數(shù)為;故滿足的的系數(shù)之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關(guān)鍵.4、A【解析】=,當(dāng)時時,單調(diào)遞減,時,單調(diào)遞增,且當(dāng),當(dāng),
當(dāng)時,恒成立,時,單調(diào)遞增且,方程R)有四個相異的實數(shù)根.令=則,,即.5、A【解析】依題意有的周期為.而,故應(yīng)左移.6、A【解析】
由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.7、A【解析】
根據(jù)分組求和法,利用等差數(shù)列的前項和公式求出前項的奇數(shù)項的和,利用等比數(shù)列的前項和公式求出前項的偶數(shù)項的和,進(jìn)而可求解.【詳解】當(dāng)為奇數(shù)時,,則數(shù)列奇數(shù)項是以為首項,以為公差的等差數(shù)列,當(dāng)為偶數(shù)時,,則數(shù)列中每個偶數(shù)項加是以為首項,以為公比的等比數(shù)列.所以.故選:A【點睛】本題考查了數(shù)列分組求和、等差數(shù)列的前項和公式、等比數(shù)列的前項和公式,需熟記公式,屬于基礎(chǔ)題.8、B【解析】
方法一:由題意得,根據(jù)等差數(shù)列的性質(zhì),得成等差數(shù)列,設(shè),則,,則,當(dāng)且僅當(dāng)時等號成立,從而的最小值為16,故選B.方法二:設(shè)正項等差數(shù)列的公差為d,由等差數(shù)列的前項和公式及,化簡可得,即,則,當(dāng)且僅當(dāng),即時等號成立,從而的最小值為16,故選B.9、D【解析】
以BC的中點為坐標(biāo)原點,建立直角坐標(biāo)系,可得,設(shè),運用向量的坐標(biāo)表示,求得點A的軌跡,進(jìn)而得到關(guān)于a的二次函數(shù),可得最小值.【詳解】以BC的中點為坐標(biāo)原點,建立如圖的直角坐標(biāo)系,可得,設(shè),由,可得,即,則,當(dāng)時,的最小值為.故選D.【點睛】本題考查向量數(shù)量積的坐標(biāo)表示,考查轉(zhuǎn)化思想和二次函數(shù)的值域解法,考查運算能力,屬于中檔題.10、D【解析】
根據(jù)函數(shù)圖象的變換規(guī)律可得到解析式,然后將四個選項代入逐一判斷即可.【詳解】解:圖象上每一點的橫坐標(biāo)變?yōu)樵瓉淼?倍,得到再將圖像向左平移個單位長度,得到函數(shù)的圖象,故選:D【點睛】考查三角函數(shù)圖象的變換規(guī)律以及其有關(guān)性質(zhì),基礎(chǔ)題.11、C【解析】
原式由正弦定理化簡得,由于,可求的值.【詳解】解:由及正弦定理得.因為,所以代入上式化簡得.由于,所以.又,故.故選:C.【點睛】本題主要考查正弦定理解三角形,三角函數(shù)恒等變換等基礎(chǔ)知識;考查運算求解能力,推理論證能力,屬于中檔題.12、A【解析】
由及得到、,進(jìn)一步得到,再利用兩角差的正切公式計算即可.【詳解】因為,所以,又,所以,,所以.故選:A.【點睛】本題考查三角函數(shù)誘導(dǎo)公式、二倍角公式以及兩角差的正切公式的應(yīng)用,考查學(xué)生的基本計算能力,是一道基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、24【解析】
先求出每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù),再減去甲乙兩名護(hù)士到同一地的種數(shù)即可.【詳解】解:每地一名醫(yī)生,3名護(hù)士的選派方法的種數(shù)有,若甲乙兩名護(hù)士到同一地的種數(shù)有,則甲乙兩名護(hù)士不到同一地的種數(shù)有.故答案為:.【點睛】本題考查利用間接法求排列組合問題,正難則反,是基礎(chǔ)題.14、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7215、6【解析】
已知,利用,求出通項,然后即可求解【詳解】∵,∴當(dāng)時,,∴;當(dāng)時,,∴,故數(shù)列是首項為-2,公比為2的等比數(shù)列,∴.又,∴,∴,∴.【點睛】本題考查通項求解問題,屬于基礎(chǔ)題16、【解析】
設(shè)直線l的方程為,,聯(lián)立直線l與拋物線C的方程,得到A,B點橫坐標(biāo)的關(guān)系式,代入到中,解出t的值,即可求得直線l的方程【詳解】設(shè)直線.由題設(shè)得,故,由題設(shè)可得.
由可得,
則,從而,得,所以l的方程為,故答案為:【點睛】本題主要考查了直線的方程,拋物線的定義,拋物線的簡單幾何性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),拋物線;(2)存在,.【解析】
(1)設(shè),易得,化簡即得;(2)利用導(dǎo)數(shù)幾何意義可得,要使,只需.聯(lián)立直線m與拋物線方程,利用根與系數(shù)的關(guān)系即可解決.【詳解】(1)設(shè),由題意,得,化簡得,所以動圓圓心Q的軌跡方程為,它是以F為焦點,以直線l為準(zhǔn)線的拋物線.(2)不妨設(shè).因為,所以,從而直線PA的斜率為,解得,即,又,所以軸.要使,只需.設(shè)直線m的方程為,代入并整理,得.首先,,解得或.其次,設(shè),,則,..故存在直線m,使得,此時直線m的斜率的取值范圍為.【點睛】本題考查直線與拋物線位置關(guān)系的應(yīng)用,涉及拋物線中的存在性問題,考查學(xué)生的計算能力,是一道中檔題.18、(Ⅰ);(Ⅱ).【解析】試題分析:(Ⅰ)在中,由余弦定理得,由正弦定理得,可得解;(Ⅱ)由(Ⅰ)可知,進(jìn)而得,在中,由正弦定理得,所以的面積即可得解.試題解析:(Ⅰ)在中,由余弦定理得,所以,由正弦定理得,所以.(Ⅱ)由(Ⅰ)可知.在中,.在中,由正弦定理得,所以.所以的面積.19、(1)增區(qū)間為,減區(qū)間為;極小值,無極大值;(2)【解析】
(1)求出f(x)的導(dǎo)數(shù),解不等式,即可得到函數(shù)的單調(diào)區(qū)間,進(jìn)而得到函數(shù)的極值;(2)由題意可得,,求出的表達(dá)式,,求出h(t)的最小值即可.【詳解】(1)將代入中,得到,求導(dǎo),得到,結(jié)合,當(dāng)?shù)玫剑涸鰠^(qū)間為,當(dāng),得減區(qū)間為且在時有極小值,無極大值.(2)將解析式代入,得,求導(dǎo)得到,令,得到,,,,,,,,因為,所以設(shè),令,則所以在單調(diào)遞減,又因為所以,所以或又因為,所以所以,所以的最小值為.【點睛】本題考查了函數(shù)的單調(diào)性、極值、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)的極值的意義,考查轉(zhuǎn)化思想與減元意識,是一道綜合題.20、(1);(2)極小值;(3)函數(shù)的零點個數(shù)為.【解析】
(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而可得出該函數(shù)的極小值;(3)由當(dāng)時,以及,結(jié)合函數(shù)在區(qū)間上的單調(diào)性可得出函數(shù)的零點個數(shù).【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為,所以,當(dāng)時,函數(shù)有極小值;(3)當(dāng)時,,且.由(2)可知,函數(shù)在上單調(diào)遞增,所以函數(shù)的零點個數(shù)為.【點睛】本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程、極值以及利用導(dǎo)數(shù)研究函數(shù)的零點問題,考查分析問題和解決問題的能力,屬于中等題.21、(1)有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)【解析】
(1)根據(jù)列聯(lián)表和獨立性檢驗的公式計算出觀測值,從而由參考數(shù)據(jù)作出判斷.(2)因為樣本中出行不戴口罩的居民有30人,其中年輕人有10人,用樣本估計總體,則出行不戴口罩的年輕人的概率為,是老年人的概率為.根據(jù)獨立重復(fù)事件的概率公式即可求得結(jié)果.【詳解】(1)由題意可知,有的把握認(rèn)為是否戴口罩出行的行為與年齡有關(guān).(2)由樣本估計總體,出行不戴口罩的年輕人的概率為,是老年人的概率為.人未戴口罩,恰有2人是青年人的概率.【點睛】本題主要考查獨立性檢驗及獨立重復(fù)事件的概率求法,難度一般.22、(1)見解析(2)【解析】
(1)根據(jù)菱形性質(zhì)可知,結(jié)合可得,進(jìn)而可證明,即,即可由線面垂直的判定定理證明平面;(2)結(jié)合(1)可證明兩兩互相垂直.即以為坐標(biāo)原點,的方向為軸正方向,為單位長度,建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面和平
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 福建省南平市太平鎮(zhèn)中學(xué)高二英語月考試題含解析
- 社區(qū)營銷的力量
- 2024汽車租運合作條款及合同書版
- 啟航未來探索卓越之路
- 旅游未來共享發(fā)展
- 4 認(rèn)識萬以內(nèi)的數(shù) 第二課時(說課稿)-2023-2024學(xué)年二年級下冊數(shù)學(xué)蘇教版
- 個人借款協(xié)議:某公司財務(wù)支持協(xié)議版A版
- 外賬合同范本(2篇)
- 多繼承人遺產(chǎn)處理合同
- 12《慧眼看交通》(說課稿)統(tǒng)編版道德與法治三年級下冊
- 中央2025年全國人大機關(guān)直屬事業(yè)單位招聘18人筆試歷年典型考點(頻考版試卷)附帶答案詳解
- 2024年度美團(tuán)平臺商家入駐服務(wù)框架協(xié)議
- 2024至2030年四氯苯醌項目投資價值分析報告
- DB4511T 0002-2023 瓶裝液化石油氣充裝、配送安全管理規(guī)范
- 《肝衰竭診治指南(2024版)》解讀
- 2025年集體經(jīng)濟(jì)發(fā)展計劃
- 房地產(chǎn)銷售主管崗位招聘筆試題及解答(某大型央企)2024年
- 足球D級教練員培訓(xùn)匯報
- 巖溶區(qū)水文地質(zhì)參數(shù)研究-洞察分析
- 三基三嚴(yán)練習(xí)題庫與答案
- 大學(xué)體育與健康 教案全套 體育舞蹈 第1-16周
評論
0/150
提交評論