版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省長春市名校調研系列卷(市命題)2024屆中考猜題數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示圖形中,不是正方體的展開圖的是()A. B.C. D.2.如圖,點P(x,y)(x>0)是反比例函數y=(k>0)的圖象上的一個動點,以點P為圓心,OP為半徑的圓與x軸的正半軸交于點A,若△OPA的面積為S,則當x增大時,S的變化情況是()A.S的值增大 B.S的值減小C.S的值先增大,后減小 D.S的值不變3.若等式(-5)□5=–1成立,則□內的運算符號為()A.+ B.– C.× D.÷4.若(x﹣1)0=1成立,則x的取值范圍是()A.x=﹣1 B.x=1 C.x≠0 D.x≠15.若m,n是一元二次方程x2﹣2x﹣1=0的兩個不同實數根,則代數式m2﹣m+n的值是()A.﹣1 B.3 C.﹣3 D.16.如圖,先鋒村準備在坡角為的山坡上栽樹,要求相鄰兩樹之間的水平距離為米,那么這兩樹在坡面上的距離為()A. B. C.5cosα D.7.下列計算正確的是()A.a3?a2=a6 B.(a3)2=a5 C.(ab2)3=ab6 D.a+2a=3a8.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.9.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm10.為了解某社區(qū)居民的用電情況,隨機對該社區(qū)10戶居民進行調查,下表是這10戶居民2015年4月份用電量的調查結果:居民(戶)1234月用電量(度/戶)30425051那么關于這10戶居民月用電量(單位:度),下列說法錯誤的是()A.中位數是50 B.眾數是51 C.方差是42 D.極差是2111.如果邊長相等的正五邊形和正方形的一邊重合,那么∠1的度數是()A.30° B.15° C.18° D.20°12.如圖,正方形ABCD和正方形CEFG中,點D在CG上,BC=1,CE=3,CH┴AF與點H,那么CH的長是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,把一個直角三角尺ACB繞著30°角的頂點B順時針旋轉,使得點A與CB的延長線上的點E重合連接CD,則∠BDC的度數為_____度.14.一個多邊形的每個內角都等于150°,則這個多邊形是_____邊形.15.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,點D是邊AB上的動點,將△ACD沿CD所在的直線折疊至△CDA的位置,CA'交AB于點E.若△A'ED為直角三角形,則AD的長為_____.16.已知a<0,那么|﹣2a|可化簡為_____.17.請寫出一個一次函數的解析式,滿足過點(1,0),且y隨x的增大而減小_____.18.將一張矩形紙片折疊成如圖所示的圖形,若AB=6cm,則AC=cm.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知關于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個不相等的實數根.(1)求m的取值范圍;(2)若m為非負整數,且該方程的根都是無理數,求m的值.20.(6分)一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外完全相同,其中紅球有個,若從中隨機摸出一個球,這個球是白球的概率為.()請直接寫出袋子中白球的個數.()隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)21.(6分)如圖,可以自由轉動的轉盤被它的兩條直徑分成了四個分別標有數字的扇形區(qū)域,其中標有數字“1”的扇形圓心角為120°.轉動轉盤,待轉盤自動停止后,指針指向一個扇形的內部,則該扇形內的數字即為轉出的數字,此時,稱為轉動轉盤一次(若指針指向兩個扇形的交線,則不計轉動的次數,重新轉動轉盤,直到指針指向一個扇形的內部為止)(1)轉動轉盤一次,求轉出的數字是-2的概率;(2)轉動轉盤兩次,用樹狀圖或列表法求這兩次分別轉出的數字之積為正數的概率.22.(8分)如圖,在平面直角坐標系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).(1)求點C的坐標;(2)將△ABC沿x軸的正方向平移,在第一象限內B、C兩點的對應點B'、C'正好落在某反比例函數圖象上.請求出這個反比例函數和此時的直線B'C'的解析式.(3)若把上一問中的反比例函數記為y1,點B′,C′所在的直線記為y2,請直接寫出在第一象限內當y1<y2時x的取值范圍.23.(8分)填空并解答:某單位開設了一個窗口辦理業(yè)務,并按顧客“先到達,先辦理”的方式服務,該窗口每2分鐘服務一位顧客.已知早上8:00上班窗口開始工作時,已經有6位顧客在等待,在窗口工作1分鐘后,又有一位“新顧客”到達,且以后每5分鐘就有一位“新顧客”到達.該單位上午8:00上班,中午11:30下班.(1)問哪一位“新顧客”是第一個不需要排隊的?分析:可設原有的6為顧客分別為a1、a2、a3、a4、a5、a6,“新顧客”為c1、c2、c3、c4….窗口開始工作記為0時刻.a1a2a3a4a5a6c1c2c3c4…到達窗口時刻000000161116…服務開始時刻024681012141618…每人服務時長2222222222…服務結束時刻2468101214161820…根據上述表格,則第位,“新顧客”是第一個不需要排隊的.(2)若其他條件不變,若窗口每a分鐘辦理一個客戶(a為正整數),則當a最小取什么值時,窗口排隊現象不可能消失.分析:第n個“新顧客”到達窗口時刻為,第(n﹣1)個“新顧客”服務結束的時刻為.24.(10分)如圖,一只螞蟻從點A沿數軸向右直爬2個單位到達點B,點A表示﹣,設點B所表示的數為m.求m的值;求|m﹣1|+(m+6)0的值.25.(10分)已知:如圖,在平面直角坐標系xOy中,直線AB分別與x軸、y軸交于點B,A,與反比例函數的圖象分別交于點C,D,CE⊥x軸于點E,tan∠ABO=,OB=4,OE=1.(1)求該反比例函數的解析式;(1)求三角形CDE的面積.26.(12分)計算:÷(﹣1)27.(12分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
由平面圖形的折疊及正方形的展開圖結合本題選項,一一求證解題.【詳解】解:A、B、D都是正方體的展開圖,故選項錯誤;C、帶“田”字格,由正方體的展開圖的特征可知,不是正方體的展開圖.故選C.【點睛】此題考查正方形的展開圖,難度不大,但是需要空間想象力才能更好的解題2、D【解析】
作PB⊥OA于B,如圖,根據垂徑定理得到OB=AB,則S△POB=S△PAB,再根據反比例函數k的幾何意義得到S△POB=|k|,所以S=2k,為定值.【詳解】作PB⊥OA于B,如圖,則OB=AB,∴S△POB=S△PAB.∵S△POB=|k|,∴S=2k,∴S的值為定值.故選D.【點睛】本題考查了反比例函數系數k的幾何意義:在反比例函數y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.3、D【解析】
根據有理數的除法可以解答本題.【詳解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,則□內的運算符號為÷,故選D.【點睛】考查有理數的混合運算,解答本題的關鍵是明確有理數的混合運算的計算方法.4、D【解析】試題解析:由題意可知:x-1≠0,
x≠1
故選D.5、B【解析】
把m代入一元二次方程,可得,再利用兩根之和,將式子變形后,整理代入,即可求值.【詳解】解:∵若,是一元二次方程的兩個不同實數根,∴,∴∴故選B.【點睛】本題考查了一元二次方程根與系數的關系,及一元二次方程的解,熟記根與系數關系的公式.6、D【解析】
利用所給的角的余弦值求解即可.【詳解】∵BC=5米,∠CBA=∠α,∴AB==.故選D.【點睛】本題主要考查學生對坡度、坡角的理解及運用.7、D【解析】
根據同底數冪的乘法、積的乘方與冪的乘方及合并同類項的運算法則進行計算即可得出正確答案.【詳解】解:A.x4?x4=x4+4=x8≠x16,故該選項錯誤;B.(a3)2=a3×2=a6≠a5,故該選項錯誤;C.(ab2)3=a3b6≠ab6,故該選項錯誤;D.a+2a=(1+2)a=3a,故該選項正確;故選D.考點:1.同底數冪的乘法;2.積的乘方與冪的乘方;3.合并同類項.8、D【解析】
根據中心對稱圖形的定義旋轉180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.9、A【解析】試題分析:利用軸對稱圖形的性質得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質10、C【解析】試題解析:10戶居民2015年4月份用電量為30,42,42,50,50,50,51,51,51,51,平均數為(30+42+42+50+50+50+51+51+51+51)=46.8,中位數為50;眾數為51,極差為51-30=21,方差為[(30-46.8)2+2(42-46.8)2+3(50-46.8)2+4(51-46.8)2]=42.1.故選C.考點:1.方差;2.中位數;3.眾數;4.極差.11、C【解析】
∠1的度數是正五邊形的內角與正方形的內角的度數的差,根據多邊形的內角和定理求得角的度數,進而求解.【詳解】∵正五邊形的內角的度數是×(5-2)×180°=108°,正方形的內角是90°,
∴∠1=108°-90°=18°.故選C【點睛】本題考查了多邊形的內角和定理、正五邊形和正方形的性質,求得正五邊形的內角的度數是關鍵.12、D【解析】
連接AC、CF,根據正方形性質求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,最后由直角三角形面積的兩種表示法即可求得CH的長.【詳解】如圖,連接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF=,∵CH⊥AF,∴,即,∴CH=.故選D.【點睛】本題考查了正方形的性質、勾股定理及直角三角形的面積,熟記各性質并作輔助線構造出直角三角形是解題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據△EBD由△ABC旋轉而成,得到△ABC≌△EBD,則BC=BD,∠EBD=∠ABC=30°,則有∠BDC=∠BCD,∠DBC=180﹣30°=10°,化簡計算即可得出.【詳解】解:∵△EBD由△ABC旋轉而成,∴△ABC≌△EBD,∴BC=BD,∠EBD=∠ABC=30°,∴∠BDC=∠BCD,∠DBC=180﹣30°=10°,∴;故答案為:1.【點睛】此題考查旋轉的性質,即圖形旋轉后與原圖形全等.14、1【解析】
根據多邊形的內角和定理:180°?(n-2)求解即可.【詳解】由題意可得:180°?(n-2)=150°?n,
解得n=1.
故多邊形是1邊形.15、3﹣或1【解析】
分兩種情況:情況一:如圖一所示,當∠A'DE=90°時;情況二:如圖二所示,當∠A'ED=90°時.【詳解】解:如圖,當∠A'DE=90°時,△A'ED為直角三角形,∵∠A'=∠A=30°,∴∠A'ED=60°=∠BEC=∠B,∴△BEC是等邊三角形,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=1,設AD=A'D=x,則DE=1﹣x,∵Rt△A'DE中,A'D=DE,∴x=(1﹣x),解得x=3﹣,即AD的長為3﹣;如圖,當∠A'ED=90°時,△A'ED為直角三角形,此時∠BEC=90°,∠B=60°,∴∠BCE=30°,∴BE=BC=1,又∵Rt△ABC中,AB=1BC=4,∴AE=4﹣1=3,∴DE=3﹣x,設AD=A'D=x,則Rt△A'DE中,A'D=1DE,即x=1(3﹣x),解得x=1,即AD的長為1;綜上所述,即AD的長為3﹣或1.故答案為3﹣或1.【點睛】本題考查了翻折變換,勾股定理,等腰直角三角形的判定和性質等知識,添加輔助線,構造直角三角形,學會運用分類討論是解題的關鍵.16、﹣3a【解析】
根據二次根式的性質和絕對值的定義解答.【詳解】∵a<0,∴|﹣2a|=|﹣a﹣2a|=|﹣3a|=﹣3a.【點睛】本題主要考查了根據二次根式的意義化簡.二次根式規(guī)律總結:當a≥0時,=a;當a≤0時,=﹣a.解題關鍵是要判斷絕對值符號和根號下代數式的正負再去掉符號.17、y=﹣x+1【解析】
根據題意可以得到k的正負情況,然后寫出一個符合要求的解析式即可解答本題.【詳解】∵一次函數y隨x的增大而減小,∴k<0,∵一次函數的解析式,過點(1,0),∴滿足條件的一個函數解析式是y=-x+1,故答案為y=-x+1.【點睛】本題考查一次函數的性質,解答本題的關鍵是明確題意,寫出符合要求的函數解析式,這是一道開放性題目,答案不唯一,只要符合要去即可.18、1.【解析】試題分析:如圖,∵矩形的對邊平行,∴∠1=∠ACB,∵∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=1cm,∴AC=1cm.考點:1軸對稱;2矩形的性質;3等腰三角形.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)m<2;(2)m=1.【解析】
(1)利用方程有兩個不相等的實數根,得△=[2(m-1)]2-4(m2-3)=-8m+2>3,然后解不等式即可;
(2)先利用m的范圍得到m=3或m=1,再分別求出m=3和m=1時方程的根,然后根據根的情況確定滿足條件的m的值.【詳解】(1)△=[2(m﹣1)]2﹣4(m2﹣3)=﹣8m+2.∵方程有兩個不相等的實數根,∴△>3.即﹣8m+2>3.解得m<2;(2)∵m<2,且m為非負整數,∴m=3或m=1,當m=3時,原方程為x2-2x-3=3,解得x1=3,x2=﹣1(不符合題意舍去),當m=1時,原方程為x2﹣2=3,解得x1=,x2=﹣,綜上所述,m=1.【點睛】本題考查了根的判別式:一元二次方程ax2+bx+c=3(a≠3)的根與△=b2-4ac有如下關系:當△>3時,方程有兩個不相等的實數根;當△=3時,方程有兩個相等的實數根;當△<3時,方程無實數根.20、(1)袋子中白球有2個;(2).【解析】試題分析:(1)設袋子中白球有x個,根據概率公式列方程解方程即可求得答案;(2)根據題意畫出樹狀圖,求得所有等可能的結果與兩次都摸到相同顏色的小球的情況,再利用概率公式即可求得答案.試題解析:(1)設袋子中白球有x個,根據題意得:=,解得:x=2,經檢驗,x=2是原分式方程的解,∴袋子中白球有2個;(2)畫樹狀圖得:∵共有9種等可能的結果,兩次都摸到相同顏色的小球的有5種情況,∴兩次都摸到相同顏色的小球的概率為:.考點:列表法與樹狀圖法;概率公式.21、(1);(2).【解析】【分析】(1)根據題意可求得2個“-2”所占的扇形圓心角的度數,再利用概率公式進行計算即可得;(2)由題意可得轉出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情況,再找出符合條件的可能性,根據概率公式進行計算即可得.【詳解】(1)由題意可知:“1”和“3”所占的扇形圓心角為120°,所以2個“-2”所占的扇形圓心角為360°-2×120°=120°,∴轉動轉盤一次,求轉出的數字是-2的概率為=;(2)由(1)可知,該轉盤轉出“1”、“3”、“-2”的概率相同,均為,所有可能性如下表所示:第一次第二次1-231(1,1)(1,-2)(1,3)-2(-2,1)(-2,-2)(-2,3)3(3,1)(3,-2)(3,3)由上表可知:所有可能的結果共9種,其中數字之積為正數的的有5種,其概率為.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數與總情況數之比.22、(1)C(﹣3,2);(2)y1=,y2=﹣x+3;(3)3<x<1.【解析】分析:(1)過點C作CN⊥x軸于點N,由已知條件證Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3結合點C在第二象限即可得到點C的坐標;(2)設△ABC向右平移了c個單位,則結合(1)可得點C′,B′的坐標分別為(﹣3+c,2)、(c,1),再設反比例函數的解析式為y1=,將點C′,B′的坐標代入所設解析式即可求得c的值,由此即可得到點C′,B′的坐標,這樣用待定系數法即可求得兩個函數的解析式了;(3)結合(2)中所得點C′,B′的坐標和圖象即可得到本題所求答案.詳解:(1)作CN⊥x軸于點N,∴∠CAN=∠CAB=∠AOB=90°,∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,∴∠CAN=∠OAB,∵A(﹣2,0)B(0,1),∴OB=1,AO=2,在Rt△CAN和Rt△AOB,∵,∴Rt△CAN≌Rt△AOB(AAS),∴AN=BO=1,CN=AO=2,NO=NA+AO=3,又∵點C在第二象限,∴C(﹣3,2);(2)設△ABC沿x軸的正方向平移c個單位,則C′(﹣3+c,2),則B′(c,1),設這個反比例函數的解析式為:y1=,又點C′和B′在該比例函數圖象上,把點C′和B′的坐標分別代入y1=,得﹣1+2c=c,解得c=1,即反比例函數解析式為y1=,此時C′(3,2),B′(1,1),設直線B′C′的解析式y(tǒng)2=mx+n,∵,∴,∴直線C′B′的解析式為y2=﹣x+3;(3)由圖象可知反比例函數y1和此時的直線B′C′的交點為C′(3,2),B′(1,1),∴若y1<y2時,則3<x<1.點睛:本題是一道綜合考查“全等三角形”、“一次函數”、“反比例函數”和“平移的性質”的綜合題,解題的關鍵是:(1)通過作如圖所示的輔助線,構造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性質結合點B、C的坐標表達出點C′和B′的坐標,由點C′和B′都在反比例函數的圖象上列出方程,解方程可得點C′和B′的坐標,從而使問題得到解決.23、(1)5;(2)5n﹣4,na+6a.【解析】
(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,則第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,第n﹣1個“新顧客”服務結束的時間為(5+n)a+a=na+6a.【詳解】(1)第5位,“新顧客”到達時間是20分鐘,第11位顧客結束服務的時間是20分鐘,所以第5位“新顧客”是第一個不需要排隊的;故答案為:5;(2)由表格中信息可得,“新顧客”到達時間為1,6,11,16,…,∴第n個“新顧客”到達窗口時刻為5n﹣4,由表格可知,“新顧客”服務開始的時間為6a,7a,8a,…,∴第n個“新顧客”服務開始的時間為(6+n)a,∴第n﹣1個“新顧客”服務開始的時間為(6+n﹣1)a=(5+n)a,∵每a分鐘辦理一個客戶,∴第n﹣1個“新顧客”服
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公會和斗魚之間合同范例
- 商場花卉租賃合同范例
- 公寓美甲店轉讓合同范例
- 合作餐飲協(xié)議合同范例
- 物業(yè)招商居間協(xié)議合同范例
- 唐山勞務合同范例定制
- 生產用品銷售合同范例
- 水泥合同違約合同范例
- 老人門衛(wèi)合同范例
- 拆遷領錢合同范例
- 浙江省公路水運工程工地試驗室管理暫行辦法
- 國家開放大學電大《管理英語4》形考任務5試題及答案
- 盤點票表格模板
- 六類網線檢測報告(共9頁)
- 安徽中電龍子湖工業(yè)園區(qū)12MW光伏發(fā)電示范項目二工區(qū)設備采購第一批35kV箱式變電站技術協(xié)議
- 注塑換模作業(yè)指導書
- 定額管件接頭含量表
- 光伏清洗機器人項目可行性研究報告寫作范文
- 四柱液壓壓力機系統(tǒng)設計說明書(共17頁)
- 污水工藝設計計算書
- 名貴中藥替代
評論
0/150
提交評論