改良hummers合成氧化石墨烯_第1頁(yè)
改良hummers合成氧化石墨烯_第2頁(yè)
改良hummers合成氧化石墨烯_第3頁(yè)
改良hummers合成氧化石墨烯_第4頁(yè)
改良hummers合成氧化石墨烯_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第第頁(yè)改良hummers合成氧化石墨烯AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide

JiChen,BowenYao,ChunLi,GaoquanShi

*

DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina

ARTICLEINFOABSTRACT

Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022

AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.

2022ElsevierLtd.Allrightsreserved.

1.Introduction

Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istinnatureandweneedtoe*foliatethemfromtheirprecursors[7].Thee*foliationofgraphitetographenecanberealizedeitherphysicallyorchemically[1].Amongthevariousmethods,chemicalreductionofgrapheneo*ide(GO)toreducedgrapheneo*ide(rGO)isuniqueandattractivebecauseofitscapabilityofproducingsingle-layergrapheneinlargescaleandatrelativelylowcost[8].Furthermore,GOandrGOareprocessibleandtheycanbefabricatedorself-assem-bledintomacroscopicmaterialswithcontrolledcompositionsandmicrostructuresforpracticalapplications[9].

GOistheprecursorofrGO;thus,itplaysacrucialroleincontrollingthestructure,propertyandtheapplicationpoten-tialofrGO[1016].ThepioneeringworkonthesynthesisofGOwasreportedbyBrodiein1859[17].Inthismethod,one

equalweightofgraphitewasmi*edwiththreeequalweightsofKClO3andreactedinfumingHNO3at60Cfor4days.Sta-udenmaierimprovedBrodiemethodbyreplacingabouttwothirdsoffumingHNO3withconcentratedH2SO4andaddingKClO3inmultipleportions[18].Thissmallmodicationen-ablestheoverallreactioninasinglevessel;thussimplifyingthesynthesismethod.However,thisreactionstillneedsalongtimeof4days.ThemostimportantandwidelyappliedmethodforthesynthesisofGOwasdevelopedbyHummersandOffemanin1958(Hummersmethod)[19].Inthiscase,theo*idationofgraphitewasachievedbyharshtreatmentofoneequalweightofgraphitepowdersinaconcentratedH2SO4solutioncontainingthreeequalweightsofKMnO4and0.5equalweightofNaNO3.TheHummersmethod,atleast,hasthreeimportantadvantagesoverprevioustech-niques.First,thereactioncanbecompletedwithinafewhours.Second,KClO3wasreplacedbyKMnO4toimprovethereactionsafety,avoidingtheevolutionofe*plosiveClO2.Third,theuseofNaNO3insteadoffumingHNO3eliminatestheformationofacidfog.

Hummersmethodhasbeenpaidthemostintensiveatten-tionbecauseofitshighefciencyandsatisfyingreactionsafety.However,itstillhasthefollowingtwoaws:(1)theo*i-

*Correspondingauthor:Fa*:+861062771149.

E-mailaddress:gshi@(G.Shi).

0008-6223/$-seefrontmatter2022ElsevierLtd.Allrightsreserved./10.1016/j.carbon.2022.07.055

226

CARBON

64(2022)225–229

dationprocedurereleasesto*icgassessuchasNO2andN2O4;(2)theresidualNa+andNO3ionsaredifculttoberemovedfromthewastewaterformedfromtheprocessesofsynthe-sizingandpurifyingGO.Tourandco-workersimprovedtheHummersmethodbye*cludingNaNO3,increasingtheamountofKMnO4,andperformingthereactionina9:1(byvolume)mi*tureofH2SO4/H3PO4[20].Thismodicationissuccessfulinincreasingthereactionyieldandreducingto*icgasevolution,whileusingtwiceasmuchKMnO4and5.2timesasmuchH2SO4asthoserequiredbyHummersmethodandalsointroducinganewcomponentofH3PO4tothereactionsystem.

Recently,Baek’sgroupstudiedtheprocessofetchingthebasalplanesofhighlyorderedpyrolyticgraphite(HOPG)withahotmi*tureofH2SO4andHNO3[21].Inthiscase,thegraph-enelayersofHOPGwereeffectivelycutande*foliatedafteralong-termtreatment.ThisobservationindicatesthattheH2SO4/HNO3mi*tureusedinHummersmethodactsasachemical‘‘scissor’’andachemical‘‘drill’’forgrapheneplanestofacilitatethepenetrationofo*idationsolution.Ontheotherhand,KMnO4isoneofthestrongesto*idants,espe-ciallyinacidicmedia[22].WiththeassistanceofKMnO4,acompleteintercalationofgraphitewithconcentratedH2SO4canbeachieved,forminggraphitebisulfateinwhicheverysingle-layergrapheneissandwichedbythelayersofbisulfateions[23,24].ThiscompleteintercalationensurestheeffectivepenetrationofKMnO4solutionintographenelayersfortheo*idationofgraphite.Accordingly,KMnO4canalsotaketheroleofNaNO3andthelatterisunnecessaryforthesynthesisofGOusingHummersmethod.Inthisarticle,wedemon-stratethatGOcanbeproducedusinganimprovedHummersmethodwithoutusingNaNO3.ThismethoddecreasesthecostandenvironmentaldutyofGOproduction.

2.

E*perimental

2.1.

SynthesisandpuricationofGO

GOwaspreparedbytheo*idationofnaturalgraphitepowder(325mesh,QingdaoHuataiLubricantSealingSTCo.Ltd.,Qingdao,China)accordingtoHummersmethodwithamodi-cationofremovingNaNO3fromthereactionformula[19].Typically,graphitepowder(3.0g)wasaddedtoconcentratedH2SO4(70mL)understirringinanicebath.Undervigorousagitation,KMnO4(9.0g)wasaddedslowlytokeepthetemper-atureofthesuspensionlowerthan20C.Successively,thereactionsystemwastransferredtoa40Coilbathandvigor-ouslystirredforabout0.5h.Then,150mLwaterwasadded,andthesolutionwasstirredfor15minat95C.Additional500mLwaterwasaddedandfollowedbyaslowadditionof15mLH2O2(30%),turningthecolorofthesolutionfromdarkbrowntoyellow.Themi*turewaslteredandwashedwith1:10HClaqueoussolution(250mL)toremovemetalions.Theresultingsolidwasdriedinairanddilutedto600mL,makingagraphiteo*ideaqueousdispersion.Finally,itwaspuriedbydialysisforoneweekusingadialysismembrane(BeijingChemicalReagentCo.,China)withamolecularweightcutoffof800014,000gmol1toremovetheremainingmetalspecies.Theresultantgraphiteo*ideaqueousdispersionwas

thendilutedto1.2L,stirredovernightandsonicatedfor30mintoe*foliateittoGO.TheGOdispersionwasthencen-trifugedat3000rpmfor40mintoremovetheune*foliatedgraphite.Forcomparison,GOwasalsopreparedbyconven-tionalHummersmethod[19],andpuriedusingthesamepro-ceduresdescribedabove.TheGOproductspreparedbytheimprovedandconventionalHummersmethodsarenomi-natedasGO1orGO2,respectively.

2.2.Instrumentsandcharacterizations

GOdispersionswerefreeze-driedandusedformorphologicalandstructuralcharacterizations.Ramanspectrawerere-cordedonaRenishawRamanspectrometerwitha514nmla-seratapowerof4.7mW.*-rayphotoelectronspectra(*PS)wererecordedonanESCALAB250photoelectronspectrome-ter(ThermoFisherScientic)withAlKa(1486.6eV)asthe*-raysourcesetat150Wandapassenergyof30eVforhighresolutionscan.UV–visiblespectraweretakenoutbytheuseofaU-3010UV–visiblespectrometer(Hitachi,Japan).Scanningelectronmicrographs(SEM)weretakenoutonaeld-emissionscanningelectronmicroscope(Sirion-200,Ja-pan).Theatomicforcemicroscopic(AFM)imagesofGOsheetsweremeasuredusingascanningprobemicroscope(SPM-9600,Shimadzu).ThesamplesusedforSEMandAFMcharacterizationsweredepositedonsiliconwafersandmicasheets,respectively.Fouriertransforminfraredspectros-copy-attenuatedtotalreectance(FTIR-ATR)spectrawerere-cordedonaFouriertransforminfraredspectrometer(BrukerVerte*V70).ThezetapotentialsofGOaqueousdispersionsweremeasuredbytheuseofHORIBANanoparticleanalyzerSZ-100.*-raydiffraction(*RD)wascarriedoutonaD8Ad-vance*-raydiffractometerwithCuKaradiation(k=0.15418nm,Bruker,Germany).

2.3.

TheremovingofMn2+ionsfromwastewater

Typically,wastewaterwascollectedfromtheprocessofl-tratingGOfromthereactionsystemofimprovedHummersmethod.Successively,20mLofwastewaterwasdilutedandneutralizedbya0.2gmL1KOHsolution.ThepHofthesolu-tionwasadjustedto$10andaprecipitatewasformed.Then,thissystemwaskeptundisturbedovernighttoagetheprecip-itate.Finallythesedimentwasltrated.TheMn2+ionsinthepuriedwastewater(orltrate)wastestbyaddingitforsev-eraldropsintoa3mLaqueoussolutionofNa2S2O8(0.1gmL1)followedbyboilingthemi*turefor1min.

3.Resultsanddiscussion

GOsamplesweresynthesizedbyusingHummersmethodwithout(GO1)orwith(GO2)usingofNaNO3andpuriedbydialysisandcentrifugation.Theyields(theweightofGOdi-videdbytheweightofgraphitepowder)ofGO1andGO2weremeasuredtobe92%3%and96%2%,respectively.Thisre-sultindicatesthatthesolutionofconcentratedH2SO4con-tainingKMnO4iscapableofo*idizinggraphitetoGOinayieldclosetothatofHummersmethodevenwithouttheassistanceofNaNO3.

CARBON

64(2022)225–229

227

Thecomposition,structureandmorphologyofGO1werecharacterizedtobenearlythesametothoseofGO2.Fig.1aistheUV–visiblespectrumoftheaqueousdispersionofGO1.Thespectrumhasamainabsorptionpeakat232nmandashoulderpeakat300nm,whichareattributedtopp*tran-sitionofC@Cbondsandnp*transitionofC@Obonds,respectively.TheoverallfeatureofthisspectrumisidenticaltothatoftheGOsynthesizedusingconventionalHummersmethod(GO2,Fig.S1a)anditsadsorptionpeaksarealsosimilartothoseoftheGOsamplesreportedinliterature[20].ThedispersionofGO1showsaclearyellowcolor,indi-catingasuccessfulo*idationofgraphitetoGO[19].TheC/OatomicratiosofGO1(Fig.1b)andGO2(Fig.S1b)weremea-suredby*PStobe2.36and2.23,respectively,reectingtheirsimilardegreesofo*idation.Thesevaluesareamongtherangeof2.12.9fortheGOproductsreportedpreviously[19].TheC1sspectrumofGO1(Fig.1c)demonstratesfourtypesofcarbonbonds:C–C/C@C(284.6eV),C–O(286.6eV),C@O(287.8eV),andO–C@O(289.0eV).Thepeakintensitiesofintactcarbon(C–C/C@C)ando*ygenatedcarbonatomsinthis*PSspectrumwerecalculatedtobe47.9%and52.1%(Fig.1c),correspondingly.ThosevaluesinthespectrumofGO2weremeasuredtobe46.5%and53.5%,respectively(Fig.S1c).Thisresultfurtherconrmsthattheyhavecompa-rableo*idizationdegrees.Itshouldbenotedherethattheo*idationdegreesofGOproductsvarywiththeirsynthesisconditions[11,15,20].EitherGO1orGO2hasamediumo*i-dationdegreecomparedwiththoseofless[15]andhighlyo*idizedcounterparts[20].ThezetapotentialsofGO1andGO2suspensionsweremeasuredtobe43.81.3and45.60.6mV,respectively,indicatingtheyarenegativelychargedbecauseofthepresenceofcarbo*ylgroups.AlthoughGO1hasaslightlyhigherzetapotentialthanthatofGO2,itsvalueisstilllowerthan30mV,providingitwith

peakat2h=10.9(Fig.2c),correspondingtoad-spaceof0.81nm,andthisvalueisinconsistentwiththatoffreeze-driedGO2(Fig.S2c).ThelargeinterlayerspacingofGO1sheetscanbeattributedtoitso*ygenatedfunctionalgroupsintroducedbytheharsho*idationtreatmentofgraphite[26].

RamanandinfraredspectralstudiesalsodemonstratethatbothGOproductsarestructurallythesame.TheRamanspec-trumofGO1(Fig.2d)orGO2(Fig.S2d)showsaG-bandat$1590cm1andaD-bandat$1350cm1.TheG-bandisasso-ciatedwithgraphiticcarbonsandtheD-bandisrelatedtothestructuraldefectsorpartiallydisorderedgraphiticdomains[27].TheD-bandsinbothspectraarestrong,conrmingthelatticedistortionsofgraphenebasalplanes.Furthermore,theFTIRATRspectraofGO1andGO2papers(Fig.2eandS2e)showthefollowingcharacteristicfunctionalgroupsofGO[20,28]:COC($1000cm1),CO(1230cm1),C@C($1620cm1)andC@O(1740–1720cm1)bonds.TheOHstretchingvibrationsintheregionof3600–3300cm1areattributedtothehydro*ylandcarbo*ylgroupsofGOandresidualwaterbetweenGOsheets.Thesehydrophilico*y-gen-containingfunctionalgroupsprovideGOsheetswithagooddispersibilityinwater[9].

Thermalgravimetricanalysis(TGA)curvesofGO1andGO2arecomparedinFig.3.Bothcurvese*hibitsimilarcharacter-istics:theweightlossbefore100CiscausedbythereleaseoftrappedwaterbetweenGOsheets[28];thedistinctweightlossbetween200and230Cisattributedtothedecompositionoflessstableo*ygenatedfunctionalgroupsonGOsheets[29].Aweakermasslossintherangeof230–700Cisrelatedtotheremovalofmorestablefunctionalgroups.Thenearlyidenti-calTGAcurvesofbothGOsamplesreecttheirclosecontentsofo*ygenatedgroups.

Post-treatmentofthewastewatercollectedfromthepro-cessesofGOsynthesisandpuricationiscrucialforcommer-

tobeMn3O4containingasmallamountofMn(OH)2(Fig.5).TheefciencyofremovingMn2+ionsfromthewastewaterhasbeentestedbytheadditionofthepuriedsupernatant

3natesthegenerationofto*icgassesandsimpliestheproce-dureofpurifyingwasteliquid,thusdecreasesthecostofGOsynthesis.TheGOproductspreparedbyboththeimprovedandconventionalHummersmethodsarenearlythesamein

CARBON

64(2022)225–229

229

theirdispersibility,chemicalstructures,thicknesses,andlat-eraldimensions.Furthermore,thee*clusionofNaNO3doesnotaffecttheyieldoftheoverallreaction.TheimprovedHummersmethoddescribedherecanbeusedtoprepareGOinlargescaleanditisone-steptowardsthesynthesisofgrapheneanditsderivativesthroughenvironmentallyfriendlyapproaches.

Acknowledgements

ThisworkwassupportedbynationalbasicresearchprogramofChina(973Program,2022CB933402),naturalsciencefoun-dationofChina(91027028,51161120361,21274074).

Appendi*A.Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,intheonlineversion,at/10.1016/j.carbon.2022.07.055.

REFERENCES

[1]NovoselovKS,Fal’koVI,ColomboL,GellertPR,SchwabMG,

KimK.Aroadmapforgraphene.Nature2022;490(7419):192–200.

[2]WeissNO,ZhouH,LiaoL,LiuY,JiangS,HuangY,etal.

Graphene:anemergingelectronicmaterial.AdvMater2022;24(43):5782–825.

[3]HuangC,LiC,ShiG.Graphenebasedcatalysts.Energy

EnvironSci2022;5(10):8848–68.

[4]LiuY,Dong*,ChenP.Biologicalandchemicalsensorsbased

ongraphenematerials.ChemSocRev2022;41(6):2283–307.[5]SunY,WuQ,ShiG.Graphenebasednewenergymaterials.

EnergyEnvironSci2022;4(4):1113–32.

[6]WasseiJK,KanerRB.Oh,theplacesyou’llgowithgraphene.

AccChemRes2022./10.1021/ar300184v[7]SegalM.Sellinggraphenebytheton.NatNanotechnol

2022;4(10):612–4.

[8]BaiH,LiC,ShiG.Functionalcompositematerialsbasedon

chemicallyconvertedgraphene.AdvMater2022;23(9):1089–115.

[9]LiC,ShiG.Three-dimensionalgraphenearchitectures.

Nanoscale2022;4(18):5549–63.

[10]ZhuY,MuraliS,CaiW,Li*,SukJW,PottsJR,etal.Graphene

andgrapheneo*ide:synthesis,properties,andapplications.AdvMater2022;22(35):3906–24.

[11]WuZ-S,RenW,GaoL,LiuB,JiangC,ChengH-M.Synthesisof

high-qualitygraphenewithapre-determinednumberoflayers.Carbon2022;47(2):493–9.

[12]ZhangL,LiangJ,HuangY,MaY,WangY,ChenY.Size-controlledsynthesisofgrapheneo*idesheetsonalarge

scaleusingchemicale*foliation.Carbon2022;47(14):3365–8.

[13]

ZhangL,Li*,HuangY,MaY,Wan*,ChenY.Controlledsynthesisoffew-layeredgraphenesheetsonalargescaleusingchemicale*foliation.Carbon2022;48(8):2367–71.

[14]

ZhaoJ,PeiS,RenW,GaoL,ChengH-M.EfcientPreparationoflarge-areagrapheneo*idesheetsfortransparentconductivelms.ACSNano2022;4(9):5245–52.

[15]

*uY,ShengK,LiC,ShiG.Highlyconductivechemicallyconvertedgraphenepreparedfrommildlyo*idizedgrapheneo*ide.JMaterChem2022;21(20):7376–80.

[16]

LiY,UmerR,SamadYA,ZhengL,LiaoK.Theeffectoftheultrasonicationpre-treatmentofgrapheneo*ide(GO)onthemechanicalpropertiesofGO/polyvinylalcoholcomposites.Carbon2022;55:321–7.

[17]

BrodieBC.Ontheatomicweightofgraphite.PhilosTransRSocLondon1859;14:249–59.

[18]StaudenmaierL.VerfahrenzurDarstellungderGraphitsaure.BerDtschChemGes1898;31(2):1481–7.

[19]HummersWS,OffemanRE.Preparationofgraphitico*ide.JAmChemSoc1958;80(6):1339.

[20]

MarcanoDC,KosynkinDV,BerlinJM,SinitskiiA,SunZ,

SlesarevA,etal.Improvedsynthesisofgrapheneo*ide.ACSNano2022;4(8):4806–14.

[21]

ShinY-R,JungS-M,JeonI-Y,BaekJ-B.Theo*idation

mechanismofhighlyorderedpyrolyticgraphiteinanitricacid/sulfuricacidmi*ture.Carbon2022;52:493–8.

[22]

DreyerDR,ParkS,BielawskiCW,RuoffRS.Thechemistryofgrapheneo*ide.ChemSocRev2022;39(1):228–40.

[23]

AvdeevVV,MonyakinaLA,NikolskayaIV,SorokinaNE,SemenenkoKN.Thechoiceofo*idizersforgraphitehydrogenosulfatechemicalsynthesis.Carbon1992;30(6):819–23.

[24]

SorokinaNE,KhaskovMA,AvdeevVV,Nikol’skayaIV.ReactionofgraphitewithsulfuricacidinthepresenceofKMnO4.RussJGenChem2022;75(2):162–8.

[25]

LiD,MuellerMB,GiljeS,KanerRB,WallaceGG.Processableaqueousdispersionsofgraphenenanosheets.NatNanotechnol2022;3(2):101–5.

[26]

ChenC,YangQ-H,YangY,LvW,WenY,HouP-*,etal.Self-assembledfree-standinggraphiteo*idemembrane.AdvMater2022;21(29):3007–11.

[27]

KudinKN,OzbasB,SchnieppHC,Prud’hommeRK,AksayIA,CarR.Ramanspectraofgraphiteo*ideandfunctionalizedgraphenesheets.NanoLett2022;8(1):36–41.

[28]

EiglerS,DotzerC,HirschA,EnzelbergerM,MuellerP.

FormationanddecompositionofCO2intercalatedgrapheneo*ide.ChemMater2022;24(7):1276–82.

[29]

McAllisterMJ,LiJ-L,AdamsonDH,SchnieppHC,AbdalaAA,LiuJ,etal.Singlesheetfunctionalizedgraphenebyo*idationandthermale*pansionofgraphite.ChemMater2022;19(18):4396–404.

[30]

WorldHealthOrganization(WHO).ManganeseinDrinkingWater—BackgroundDocumentforDevelopmentofWHOGuidelinesforDrinking-WaterQuality.Geneva:WHO;2022.

AnimprovedHummersmethodforeco-friendlysynthesisofgrapheneo*ide

JiChen,BowenYao,ChunLi,GaoquanShi

*

DepartmentofChemistry,TsinghuaUniversity,Beijing100084,People’sRepublicofChina

ARTICLEINFOABSTRACT

Articlehistory:Received4June2022Accepted21July2022Availableonline27July2022

AnimprovedHummersmethodwithoutusingNaNO3canproducegrapheneo*idenearlythesametothatpreparedbyconventionalHummersmethod.Thismodicationdoesnotdecreasetheyieldofproduct,eliminatingtheevolutionofNO2/N2O4to*icgassesandsim-plifyingthedisposalofwastewaterbecauseoftheine*istenceofNa+andNO3ions.Forthersttime,wealsodevelopedaprototypemethodofpost-treatingthewastewatercol-lectedfromthesystemsofsynthesizingandpurifyinggrapheneo*ide.ThecontentofMn2+ionsinthepuriedwastewaterwasmeasuredtobelowerthantheguidelinevaluefordrinkingwater.

2022ElsevierLtd.Allrightsreserved.

1.Introduction

Graphenehasauniqueatom-thicktwo-dimensionalstruc-ture,e*cellentelectronic,mechanical,opticalandthermalproperties[1].Therefore,ithasbeenwidelye*ploredfortheapplicationsinelectronics[2],catalysis[3],sensors[4],andenergyconversionandstorage[5,6],etc.Forthesepurposes,themass-productionofgraphenematerialsatlowcostsisoneoftheessentialrequirements.Actually,graphenesheetsalreadye*istin

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論