版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆山西省忻州市(偏關致遠中學中考聯(lián)考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若關于的一元二次方程有兩個不相等的實數根,則的取值范圍()A. B. C.且 D.2.二次函數y=ax2+bx+c(a,b,c為常數)中的x與y的部分對應值如表所示:x-1013y33下列結論:(1)abc<0(2)當x>1時,y的值隨x值的增大而減??;(3)16a+4b+c<0(4)x=3是方程ax2+(b-1)x+c=0的一個根;其中正確的個數為()A.4個 B.3個 C.2個 D.1個3.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.54.如圖是由若干個大小相同的小正方體堆砌而成的幾何體,那么其三種視圖中面積最小的是()A.主視圖 B.俯視圖 C.左視圖 D.一樣大5.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.6.如圖,是直角三角形,,,點在反比例函數的圖象上.若點在反比例函數的圖象上,則的值為()A.2 B.-2 C.4 D.-47.我國古代數學著作《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何。”大致意思是:“用一根繩子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據題意所列方程組正確的是()A. B. C. D.8.如圖,平行四邊形ABCD中,E為BC邊上一點,以AE為邊作正方形AEFG,若,,則的度數是A. B. C. D.9.如圖,彈性小球從點P(0,1)出發(fā),沿所示方向運動,每當小球碰到正方形OABC的邊時反彈,反彈時反射角等于入射角,當小球第1次碰到正方形的邊時的點為P1(2,0),第2次碰到正方形的邊時的點為P2,…,第n次碰到正方形的邊時的點為Pn,則點P2018的坐標是()A.(1,4) B.(4,3) C.(2,4) D.(4,1)10.如圖,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠111.把四張形狀大小完全相同的小長方形卡片(如圖①)不重疊地放在一個底面為長方形(長為寬為)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分周長和是()A. B. C. D.12.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設AP=x,△APQ的面積為y,則y與x的函數圖象正確的是()A. B.C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,隨機閉合開關,,中的兩個,能讓兩盞燈泡和同時發(fā)光的概率為___________.14.對于二次函數y=x2﹣4x+4,當自變量x滿足a≤x≤3時,函數值y的取值范圍為0≤y≤1,則a的取值范圍為__.15.使得關于x的分式方程的解為負整數,且使得關于x的不等式組有且僅有5個整數解的所有k的和為_____.16.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.17.如圖,將周長為8的△ABC沿BC方向向右平移1個單位得到△DEF,則四邊形ABFD的周長為.18.若代數式的值不小于代數式的值,則x的取值范圍是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知AB是⊙O的直徑,點C、D在⊙O上,點E在⊙O外,∠EAC=∠D=60°.求∠ABC的度數;求證:AE是⊙O的切線;當BC=4時,求劣弧AC的長.20.(6分)已知△ABC在平面直角坐標系中的位置如圖所示.分別寫出圖中點A和點C的坐標;畫出△ABC繞點C按順時針方向旋轉90°后的△A′B′C′;求點A旋轉到點A′所經過的路線長(結果保留π).21.(6分)為落實“美麗撫順”的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?22.(8分)如圖,在平面直角坐標系中,矩形OABC的頂點A,C分別在x軸,y軸的正半軸上,且OA=4,OC=3,若拋物線經過O,A兩點,且頂點在BC邊上,對稱軸交AC于點D,動點P在拋物線對稱軸上,動點Q在拋物線上.(1)求拋物線的解析式;(2)當PO+PC的值最小時,求點P的坐標;(3)是否存在以A,C,P,Q為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.23.(8分)京沈高速鐵路赤峰至喀左段正在建設中,甲、乙兩個工程隊計劃參與一項工程建設,甲隊單獨施工30天完成該項工程的,這時乙隊加入,兩隊還需同時施工15天,才能完成該項工程.若乙隊單獨施工,需要多少天才能完成該項工程?若甲隊參與該項工程施工的時間不超過36天,則乙隊至少施工多少天才能完成該項工程?24.(10分)已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.25.(10分)如圖,在每個小正方形的邊長為1的網格中,點A,B,C均在格點上.(Ⅰ)△ABC的面積等于_____;(Ⅱ)若四邊形DEFG是正方形,且點D,E在邊CA上,點F在邊AB上,點G在邊BC上,請在如圖所示的網格中,用無刻度的直尺,畫出點E,點G,并簡要說明點E,點G的位置是如何找到的(不要求證明)_____.26.(12分)如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點E,作ED⊥EB交AB于點D,⊙O是△BED的外接圓.求證:AC是⊙O的切線;已知⊙O的半徑為2.5,BE=4,求BC,AD的長.27.(12分)如圖,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中點,ED的延長線與CB的延長線相交于點F.(1)求證:DF是BF和CF的比例中項;(2)在AB上取一點G,如果AE?AC=AG?AD,求證:EG?CF=ED?DF.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
根據一元二次方程的定義結合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據一元二次方程的定義結合根的判別式列出關于a的一元一次不等式組是解題的關鍵.2、B【解析】
(1)利用待定系數法求出二次函數解析式為y=-x2+x+3,即可判定正確;(2)求得對稱軸,即可判定此結論錯誤;(3)由當x=4和x=-1時對應的函數值相同,即可判定結論正確;(4)當x=3時,二次函數y=ax2+bx+c=3,即可判定正確.【詳解】(1)∵x=-1時y=-,x=0時,y=3,x=1時,y=,∴,解得∴abc<0,故正確;(2)∵y=-x2+x+3,∴對稱軸為直線x=-=,所以,當x>時,y的值隨x值的增大而減小,故錯誤;(3)∵對稱軸為直線x=,∴當x=4和x=-1時對應的函數值相同,∴16a+4b+c<0,故正確;(4)當x=3時,二次函數y=ax2+bx+c=3,∴x=3是方程ax2+(b-1)x+c=0的一個根,故正確;綜上所述,結論正確的是(1)(3)(4).故選:B.【點睛】本題考查了二次函數的性質,主要利用了待定系數法求二次函數解析式,二次函數的增減性,二次函數與不等式,根據表中數據求出二次函數解析式是解題的關鍵.3、A【解析】
根據直線外一點和直線上點的連線中,垂線段最短的性質,可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質,解題關鍵是利用垂線段的性質.4、C【解析】如圖,該幾何體主視圖是由5個小正方形組成,左視圖是由3個小正方形組成,俯視圖是由5個小正方形組成,故三種視圖面積最小的是左視圖,故選C.5、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.6、D【解析】
要求函數的解析式只要求出點的坐標就可以,過點、作軸,軸,分別于、,根據條件得到,得到:,然后用待定系數法即可.【詳解】過點、作軸,軸,分別于、,設點的坐標是,則,,,,,,,,,,,,因為點在反比例函數的圖象上,則,點在反比例函數的圖象上,點的坐標是,.故選:.【點睛】本題考查了反比例函數圖象上點的坐標特征,相似三角形的判定與性質,求函數的解析式的問題,一般要轉化為求點的坐標的問題,求出圖象上點的橫縱坐標的積就可以求出反比例函數的解析式.7、A【解析】
本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.8、A【解析】分析:首先求出∠AEB,再利用三角形內角和定理求出∠B,最后利用平行四邊形的性質得∠D=∠B即可解決問題.詳解:∵四邊形ABCD是正方形,∴∠AEF=90°,∵∠CEF=15°,∴∠AEB=180°-90°-15°=75°,∵∠B=180°-∠BAE-∠AEB=180°-40°-75°=65°,∵四邊形ABCD是平行四邊形,∴∠D=∠B=65°故選A.點睛:本題考查正方形的性質、平行四邊形的性質、三角形內角和定理等知識,解題的關鍵是靈活運用所學知識解決問題,學會用轉化的思想思考問題,屬于中考??碱}型.9、D【解析】
先根據反射角等于入射角先找出前幾個點,直至出現(xiàn)規(guī)律,然后再根據規(guī)律進行求解.【詳解】由分析可得p(0,1)、、、、、、等,故該坐標的循環(huán)周期為7則有則有,故是第2018次碰到正方形的點的坐標為(4,1).【點睛】本題主要考察規(guī)律的探索,注意觀察規(guī)律是解題的關鍵.10、D【解析】
先根據AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把兩式相加即可得出結論.【詳解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故選:D.【點睛】本題考查的是平行線的判定,用到的知識點為:兩直線平行,內錯角相等,同旁內角互補.11、D【解析】
根據題意列出關系式,去括號合并即可得到結果.【詳解】解:設小長方形卡片的長為x,寬為y,根據題意得:x+2y=a,則圖②中兩塊陰影部分周長和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b.故選擇:D.【點睛】此題考查了整式的加減,熟練掌握運算法則是解本題的關鍵.12、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數圖象,有一定難度,解題關鍵是注意點Q在AP、DC上這兩種情況.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與能讓兩盞燈泡同時發(fā)光的情況,再利用概率公式求解即可求得答案.【詳解】解:畫樹狀圖得:由樹狀圖得:共有6種結果,且每種結果的可能性相同,其中能讓兩盞燈泡同時發(fā)光的是閉合開關為:K1、K3與K3、K1共兩種結果,∴能讓兩盞燈泡同時發(fā)光的概率,故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率.列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件,樹狀圖法適合兩步或兩步以上完成的事件.注意概率=所求情況數與總情況數之比.14、1≤a≤1【解析】
根據y的取值范圍可以求得相應的x的取值范圍.【詳解】解:∵二次函數y=x1﹣4x+4=(x﹣1)1,∴該函數的頂點坐標為(1,0),對稱軸為:x=﹣,把y=0代入解析式可得:x=1,把y=1代入解析式可得:x1=3,x1=1,所以函數值y的取值范圍為0≤y≤1時,自變量x的范圍為1≤x≤3,故可得:1≤a≤1,故答案為:1≤a≤1.【點睛】此題考查二次函數的性質,解答本題的關鍵是明確題意,利用二次函數的性質和數形結合的思想解答.15、12.1【解析】
依據分式方程=1的解為負整數,即可得到k>,k≠1,再根據不等式組有1個整數解,即可得到0≤k<4,進而得出k的值,從而可得符合題意的所有k的和.【詳解】解分式方程=1,可得x=1-2k,
∵分式方程=1的解為負整數,
∴1-2k<0,
∴k>,
又∵x≠-1,
∴1-2k≠-1,
∴k≠1,
解不等式組,可得,
∵不等式組有1個整數解,
∴1≤<2,
解得0≤k<4,
∴<k<4且k≠1,
∴k的值為1.1或2或2.1或3或3.1,
∴符合題意的所有k的和為12.1,
故答案為12.1.【點睛】本題考查了解一元一次不等式組、分式方程的解,解題時注意分式方程中的解要滿足分母不為0的情況.16、B【解析】
過P點作PE⊥BP,垂足為P,交BC于E,根據AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.17、1.【解析】試題解析:根據題意,將周長為8的△ABC沿邊BC向右平移1個單位得到△DEF,則AD=1,BF=BC+CF=BC+1,DF=AC,又∵AB+BC+AC=1,∴四邊形ABFD的周長=AD+AB+BF+DF=1+AB+BC+1+AC=1.考點:平移的性質.18、x≥【解析】
根據題意列出不等式,依據解不等式得基本步驟求解可得.【詳解】解:根據題意,得:,6(3x﹣1)≥5(1﹣5x),18x﹣6≥5﹣25x,18x+25x≥5+6,43x≥11,x≥,故答案為x≥.【點睛】本題主要考查解不等式得基本技能,熟練掌握解一元一次不等式的基本步驟是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)60°;(2)證明略;(3)【解析】
(1)根據∠ABC與∠D都是劣弧AC所對的圓周角,利用圓周角定理可證出∠ABC=∠D=60°;
(2)根據AB是⊙O的直徑,利用直徑所對的圓周角是直角得到∠ACB=90°,結合∠ABC=60°求得∠BAC=30°,從而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切線;
(3)連結OC,證出△OBC是等邊三角形,算出∠BOC=60°且⊙O的半徑等于4,可得劣弧AC所對的圓心角∠AOC=120°,再由弧長公式加以計算,可得劣弧AC的長.【詳解】(1)∵∠ABC與∠D都是弧AC所對的圓周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直徑,∴∠ACB=90°.∴∠BAC=30°,∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切線;(3)如圖,連接OC,∵OB=OC,∠ABC=60°,∴△OBC是等邊三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的長為==.【點睛】本題考查了切線長定理及弧長公式,熟練掌握定理及公式是解題的關鍵.20、(1)、(2)見解析(3)【解析】試題分析:(1)根據點的平面直角坐標系中點的位置寫出點的坐標;(2)根據旋轉圖形的性質畫出旋轉后的圖形;(3)點A所經過的路程是以點C為圓心,AC長為半徑的扇形的弧長.試題解析:(1)A(0,4)C(3,1)(2)如圖所示:(3)根據勾股定理可得:AC=3,則.考點:圖形的旋轉、扇形的弧長計算公式.21、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】
(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.22、(1)y=x2+3x;(2)當PO+PC的值最小時,點P的坐標為(2,);(3)存在,具體見解析.【解析】
(1)由條件可求得拋物線的頂點坐標及A點坐標,利用待定系數法可求得拋物線解析式;(2)D與P重合時有最小值,求出點D的坐標即可;(3)存在,分別根據①AC為對角線,②AC為邊,兩種情況,分別求解即可.【詳解】(1)在矩形OABC中,OA=4,OC=3,∴A(4,0),C(0,3),∵拋物線經過O、A兩點,且頂點在BC邊上,∴拋物線頂點坐標為(2,3),∴可設拋物線解析式為y=a(x﹣2)2+3,把A點坐標代入可得0=a(4﹣2)2+3,解得a=,∴拋物線解析式為y=(x﹣2)2+3,即y=x2+3x;(2)∵點P在拋物線對稱軸上,∴PA=PO,∴PO+PC=PA+PC.∴當點P與點D重合時,PA+PC=AC;當點P不與點D重合時,PA+PC>AC;∴當點P與點D重合時,PO+PC的值最小,設直線AC的解析式為y=kx+b,根據題意,得解得∴直線AC的解析式為,當x=2時,,∴當PO+PC的值最小時,點P的坐標為(2,);(3)存在.①AC為對角線,當四邊形AQCP為平行四邊形,點Q為拋物線的頂點,即Q(2,3),則P(2,0);②AC為邊,當四邊形AQPC為平行四邊形,點C向右平移2個單位得到P,則點A向右平移2個單位得到點Q,則Q點的橫坐標為6,當x=6時,,此時Q(6,?9),則點A(4,0)向右平移2個單位,向下平移9個單位得到點Q,所以點C(0,3)向右平移2個單位,向下平移9個單位得到點P,則P(2,?6);當四邊形APQC為平行四邊形,點A向左平移2個單位得到P,則點C向左平移2個單位得到點Q,則Q點的橫坐標為?2,當x=?2時,,此時Q(?2,?9),則點C(0,3)向左平移2個單位,向下平移12個單位得到點Q,所以點A(4,0)向左平移2個單位,向下平移12個單位得到點P,則P(2,?12);綜上所述,P(2,0),Q(2,3)或P(2,?6),Q(6,?9)或P(2,?12),Q(?2,?9).【點睛】二次函數的綜合應用,涉及矩形的性質、待定系數法、平行四邊形的性質、方程思想及分類討論思想等知識.23、(1)乙隊單獨施工需要1天完成;(2)乙隊至少施工l8天才能完成該項工程.【解析】
(1)先求得甲隊單獨施工完成該項工程所需時間,設乙隊單獨施工需要x天完成該項工程,再根據“甲完成的工作量+乙完成的工作量=1”列方程解方程即可求解;(2)設乙隊施工y天完成該項工程,根據題意列不等式解不等式即可.【詳解】(1)由題意知,甲隊單獨施工完成該項工程所需時間為1÷=90(天).設乙隊單獨施工需要x天完成該項工程,則,去分母,得x+1=2x.解得x=1.經檢驗x=1是原方程的解.答:乙隊單獨施工需要1天完成.(2)設乙隊施工y天完成該項工程,則1-解得y≥2.答:乙隊至少施工l8天才能完成該項工程.24、證明見解析【解析】證明:(1)∵DF∥BE,∴∠DFE=∠BEF.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS).(2)由(1)知△AFD≌△CEB,∴∠DAC=∠BCA,AD=BC,∴AD∥BC.∴四邊形ABCD是平行四邊形(一組對邊平行且相等的四邊形是平行四邊形).(1)利用兩邊和它們的夾角對應相等的兩三角形全等(SAS),這一判定定理容易證明△AFD≌△CEB.(2)由△AFD≌△CEB,容易證明AD=BC且AD∥BC,可根據一組對邊平行且相等的四邊形是平行四邊形.25、6作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G【解析】
(1)根據三角形面積公式即可求解,(2)作出∠ACB的角平分線交AB于F,再過F點作FE⊥AC于E,作FG⊥BC于G,過G點作GD⊥AC于D,四邊形DEFG即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學生畢業(yè)贈言15篇
- 文藝晚會策劃方案范文錦集八篇
- 產品銷售合同六篇
- 團隊精神演講稿(匯編15篇)
- 校本研修工作總結
- 企業(yè)員工工作計劃
- 我的拿手好戲作文500字10篇
- 數學學習計劃合集10篇
- 護士個人年終述職報告4篇
- 春季開學典禮校長演講稿合集6篇
- 春節(jié)飲食注意
- 讓財務助推業(yè)務-業(yè)財融合課件
- 華為績效與激勵:價值創(chuàng)造、價值評價、價值分配PPT版
- 醫(yī)療技術臨床應用管理辦法
- 小型企業(yè)通用物資入庫單
- 直升機彈性軸承性能優(yōu)化專題研究
- 微型頂管施工方案
- 老化箱點檢表A4版本
- 略說魯迅全集的五種版本
- 2022年110接警員業(yè)務測試題庫及答案
- DB44∕T 115-2000 中央空調循環(huán)水及循環(huán)冷卻水水質標準
評論
0/150
提交評論