北京市徐悲鴻中學2024屆高三第三次測評數學試卷含解析_第1頁
北京市徐悲鴻中學2024屆高三第三次測評數學試卷含解析_第2頁
北京市徐悲鴻中學2024屆高三第三次測評數學試卷含解析_第3頁
北京市徐悲鴻中學2024屆高三第三次測評數學試卷含解析_第4頁
北京市徐悲鴻中學2024屆高三第三次測評數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市徐悲鴻中學2024屆高三第三次測評數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數滿足,則的共軛復數是()A. B. C. D.2.已知直線y=k(x+1)(k>0)與拋物線C相交于A,B兩點,F為C的焦點,若|FA|=2|FB|,則|FA|=()A.1 B.2 C.3 D.43.已知雙曲線C的兩條漸近線的夾角為60°,則雙曲線C的方程不可能為()A. B. C. D.4.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大5.函數()的圖像可以是()A. B.C. D.6.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.37.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個8.設拋物線上一點到軸的距離為,到直線的距離為,則的最小值為()A.2 B. C. D.39.由曲線圍成的封閉圖形的面積為()A. B. C. D.10.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元11.下列函數中,在區(qū)間上為減函數的是()A. B. C. D.12.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前項和為,,,,則滿足的正整數的所有取值為__________.14.已知集合,,則__________.15.請列舉用0,1,2,3這4個數字所組成的無重復數字且比210大的所有三位奇數:___________.16.在數列中,,則數列的通項公式_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.19.(12分)在直角坐標系中,直線的參數方程是為參數),曲線的參數方程是為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.20.(12分)已知函數的導函數的兩個零點為和.(1)求的單調區(qū)間;(2)若的極小值為,求在區(qū)間上的最大值.21.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.22.(10分)已知橢圓的左、右焦點分別為、,點在橢圓上,且.(Ⅰ)求橢圓的標準方程;(Ⅱ)設直線與橢圓相交于、兩點,與圓相交于、兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據復數的除法運算法則和共軛復數的定義直接求解即可.【詳解】由,得,所以.故選:B【點睛】本題考查了復數的除法的運算法則,考查了復數的共軛復數的定義,屬于基礎題.2、C【解析】

方法一:設,利用拋物線的定義判斷出是的中點,結合等腰三角形的性質求得點的橫坐標,根據拋物線的定義求得,進而求得.方法二:設出兩點的橫坐標,由拋物線的定義,結合求得的關系式,聯立直線的方程和拋物線方程,寫出韋達定理,由此求得,進而求得.【詳解】方法一:由題意得拋物線的準線方程為,直線恒過定點,過分別作于,于,連接,由,則,所以點為的中點,又點是的中點,則,所以,又所以由等腰三角形三線合一得點的橫坐標為,所以,所以.方法二:拋物線的準線方程為,直線由題意設兩點橫坐標分別為,則由拋物線定義得又①②由①②得.故選:C【點睛】本小題主要考查拋物線的定義,考查直線和拋物線的位置關系,屬于中檔題.3、C【解析】

判斷出已知條件中雙曲線的漸近線方程,求得四個選項中雙曲線的漸近線方程,由此確定選項.【詳解】兩條漸近線的夾角轉化為雙曲漸近線與軸的夾角時要分為兩種情況.依題意,雙曲漸近線與軸的夾角為30°或60°,雙曲線的漸近線方程為或.A選項漸近線為,B選項漸近線為,C選項漸近線為,D選項漸近線為.所以雙曲線的方程不可能為.故選:C【點睛】本小題主要考查雙曲線的漸近線方程,屬于基礎題.4、C【解析】

,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.5、B【解析】

根據,可排除,然后采用導數,判斷原函數的單調性,可得結果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數在單調遞減在單調遞增,故選:B【點睛】本題考查函數的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調性;(5)值域,屬基礎題.6、B【解析】

設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數,即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.7、D【解析】

運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.8、A【解析】

分析:題設的直線與拋物線是相離的,可以化成,其中是點到準線的距離,也就是到焦點的距離,這樣我們從幾何意義得到的最小值,從而得到的最小值.詳解:由①得到,,故①無解,所以直線與拋物線是相離的.由,而為到準線的距離,故為到焦點的距離,從而的最小值為到直線的距離,故的最小值為,故選A.點睛:拋物線中與線段的長度相關的最值問題,可利用拋物線的幾何性質把動線段的長度轉化為到準線或焦點的距離來求解.9、A【解析】

先計算出兩個圖像的交點分別為,再利用定積分算兩個圖形圍成的面積.【詳解】封閉圖形的面積為.選A.【點睛】本題考察定積分的應用,屬于基礎題.解題時注意積分區(qū)間和被積函數的選取.10、D【解析】

設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【點睛】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.11、C【解析】

利用基本初等函數的單調性判斷各選項中函數在區(qū)間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區(qū)間上為增函數;對于B選項,函數在區(qū)間上為增函數;對于C選項,函數在區(qū)間上為減函數;對于D選項,函數在區(qū)間上為增函數.故選:C.【點睛】本題考查函數在區(qū)間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.12、C【解析】

先求得的漸近線方程,根據沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C【點睛】本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、20,21【解析】

由題意知數列奇數項和偶數項分別為等差數列和等比數列,則根據為奇數和為偶數分別算出求和公式,代入數值檢驗即可.【詳解】解:由題意知數列的奇數項構成公差為的等差數列,偶數項構成公比為的等比數列,則;.當時,,.當時,,.由此可知,滿足的正整數的所有取值為20,21.故答案為:20,21【點睛】本題考查等差數列與等比數列通項與求和公式,是綜合題,分清奇數項和偶數項是解題的關鍵.14、【解析】

解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎題.15、231,321,301,1【解析】

分個位數字是1、3兩種情況討論,即得解【詳解】0,1,2,3這4個數字所組成的無重復數字比210大的所有三位奇數有:(1)當個位數字是1時,數字可以是231,321,301;(2)當個位數字是3時數字可以是1.故答案為:231,321,301,1【點睛】本題考查了分類計數法的應用,考查了學生分類討論,數學運算的能力,屬于基礎題.16、【解析】

由題意可得,又,數列的奇數項為首項為1,公差為2的等差數列,對分奇數和偶數兩種情況,分別求出,從而得到數列的通項公式.【詳解】解:∵,∴①,②,①﹣②得:,又∵,∴數列的奇數項為首項為1,公差為2的等差數列,∴當為奇數時,,當為偶數時,則為奇數,∴,∴數列的通項公式,故答案為:.【點睛】本題考查求數列的通項公式,解題關鍵是由已知遞推關系得出,從而確定數列的奇數項成等差數列,求出通項公式后再由已知求出偶數項,要注意結果是分段函數形式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一件產品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產一件產品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應用,對立事件的概率公式的應用,解題關鍵是對題意的理解,意在考查學生的數學建模能力和數學運算能力,屬于基礎題.18、(1);(2).【解析】

(1)根據題意得到GB是線段的中垂線,從而為定值,根據橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯立設而不求韋達定理進行求解即可,屬于一般性題目.19、(1),;(2).【解析】

(1)先把直線和曲線的參數方程化成普通方程,再化成極坐標方程;(2)聯立極坐標方程,根據極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數方程是為參數),消去參數得直角坐標方程為:.轉換為極坐標方程為:,即.曲線的參數方程是(為參數),轉換為直角坐標方程為:,化為一般式得化為極坐標方程為:.

(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于??碱}型.20、(1)單調遞增區(qū)間是,單調遞減區(qū)間是和;(2)最大值是.【解析】

(1)求得,由題意可知和是函數的兩個零點,根據函數的符號變化可得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論