版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
關(guān)于可測(cè)函數(shù)的定義及其簡單性質(zhì)新的積分(Lebesgue積分,從分割值域入手)yiyi-1
用
mEi表示
Ei的“長度”
問題:怎樣的函數(shù)可使Ei都有“長度”(測(cè)度)?第2頁,共51頁,2024年2月25日,星期天1可測(cè)函數(shù)定義例
(1)零集上的任何函數(shù)都是可測(cè)函數(shù)。注:稱外測(cè)度為0的集合為零集;零集的子集,有限并,可數(shù)并仍為零集定義:設(shè)f(x)是可測(cè)集E上的實(shí)函數(shù)(可取
),若
可測(cè),則稱f(x)是E上的可測(cè)函數(shù)
第3頁,共51頁,2024年2月25日,星期天(2)簡單函數(shù)是可測(cè)函數(shù)可測(cè)函數(shù)注:Dirichlet函數(shù)是簡單函數(shù)01若
(Ei可測(cè)且兩兩不交),f(x)在每個(gè)Ei上取常值
ci,則稱f(x)是E上的簡單函數(shù);第4頁,共51頁,2024年2月25日,星期天(3)可測(cè)集E上的連續(xù)函數(shù)f(x)必為可測(cè)函數(shù)
對(duì)比:設(shè)f(x)為(a,b)上有限實(shí)函數(shù),
()()()f(x)在
處連續(xù)(對(duì)閉區(qū)間端點(diǎn)則用左或右連續(xù))設(shè)f(x)為E上有限實(shí)函數(shù),稱f(x)在
處連續(xù)第5頁,共51頁,2024年2月25日,星期天可測(cè)集E上的連續(xù)函數(shù)f(x)定為可測(cè)函數(shù)
證明:任取x∈E[f>a],則f(x)>a,由連續(xù)性假設(shè)知,()x0
f(x0)+εf(x0)f(x0)-εa則G為開集,當(dāng)然為可測(cè)集,且第6頁,共51頁,2024年2月25日,星期天⑷
R中的可測(cè)子集E上的單調(diào)函數(shù)f(x)必為可測(cè)函數(shù)。aIax1x2由f單調(diào)增知下面的集合為可測(cè)集證明:不妨設(shè)f單調(diào)增,對(duì)任意a∈R第7頁,共51頁,2024年2月25日,星期天⒊可測(cè)函數(shù)的等價(jià)描述證明:利用(1)與(4),(2)與(3)互為余集,以及⒈定義:設(shè)f(x)是可測(cè)集E上的實(shí)函數(shù),則
f(x)在E上可測(cè)第8頁,共51頁,2024年2月25日,星期天
對(duì)前面等式的說明
([a-1/na([aa+1/n第9頁,共51頁,2024年2月25日,星期天⒋可測(cè)函數(shù)的性質(zhì)⑴可測(cè)函數(shù)關(guān)于子集、并集的性質(zhì)反之,若
,f(x)限制在En上是可測(cè)函數(shù),則f(x)在E上也是可測(cè)函數(shù)。即:若f(x)是E上的可測(cè)函數(shù),可測(cè),則f(x)限制在E1上也是可測(cè)函數(shù);第10頁,共51頁,2024年2月25日,星期天若m(E[f≠g])=0,則稱f(x)=g(x)在E上幾乎處處成立,記作f(x)=g(x)a.e.于E。(almosteverywhere)注:在一零測(cè)度集上改變函數(shù)的取值不影響函數(shù)的可測(cè)性證明:令E1=E[f≠g],
E2=E[f=g],則mE1=0從而
g(x)在E1上可測(cè)
,即:
設(shè)f(x)=g(x)a.e.于E,
f(x)在E上可測(cè),則g(x)在E上也可測(cè)
注:用到了可測(cè)函數(shù)關(guān)于子集、并集的性質(zhì)另外f(x)在E2上可測(cè),從而
g(x)在E2上也可測(cè)
,進(jìn)一步g(x)在E=E1
∪E2上也可測(cè)
。第11頁,共51頁,2024年2月25日,星期天⑵可測(cè)函數(shù)類關(guān)于四則運(yùn)算封閉
即:若f(x),g(x)是E上的可測(cè)函數(shù),則f(x)+g(x),f(x)-g(x),f(x)g(x),f(x)/g(x)仍為E上的可測(cè)函數(shù)。a-g(x)rf(x)第12頁,共51頁,2024年2月25日,星期天⑵可測(cè)函數(shù)類關(guān)于四則運(yùn)算封閉
即:若f(x),g(x)是E上的可測(cè)函數(shù),則f(x)+g(x),f(x)-g(x),f(x)g(x),f(x)/g(x)仍為E上的可測(cè)函數(shù)。a-g(x)rf(x)第13頁,共51頁,2024年2月25日,星期天類似可證:設(shè)f(x),g(x)是E上可測(cè)函數(shù),則
為可測(cè)集。證明中利用了Q是可數(shù)集和R中的稠密集兩個(gè)性質(zhì)a-g(x)rf(x)第14頁,共51頁,2024年2月25日,星期天類似可證:設(shè)f(x),g(x)是E上可測(cè)函數(shù),則
為可測(cè)集。證明中利用了Q是可數(shù)集和R中的稠密集兩個(gè)性質(zhì)a-g(x)rf(x)第15頁,共51頁,2024年2月25日,星期天⑶可測(cè)函數(shù)類關(guān)于確界運(yùn)算和極限運(yùn)算封閉。
推論:可測(cè)函數(shù)列的極限函數(shù)仍為可測(cè)函數(shù)(連續(xù)函數(shù)列的極限函數(shù)不一定為連續(xù)函數(shù))。若fn(x)是E上的可測(cè)函數(shù),則下列函數(shù)仍為E上的可測(cè)函數(shù)。第16頁,共51頁,2024年2月25日,星期天對(duì)上式的說明:下確界:
([a-1/na第17頁,共51頁,2024年2月25日,星期天例:
R1上的可微函數(shù)f(x)的導(dǎo)函數(shù)f`(x)是可測(cè)函數(shù)
利用了可測(cè)函數(shù)列的極限函數(shù)仍為可測(cè)函數(shù).從而f`(x)是一列連續(xù)函數(shù)(當(dāng)然是可測(cè)函數(shù))的極限,故f`(x)是可測(cè)函數(shù).
證明:由于gn(x)第18頁,共51頁,2024年2月25日,星期天例
設(shè){fn}是可測(cè)函數(shù)列,則它的收斂點(diǎn)全體和發(fā)散點(diǎn)全體是可測(cè)集.注意:函數(shù)列收斂與函數(shù)列收斂于f之間的不同.證明:發(fā)散點(diǎn)全體為
收斂點(diǎn)全體為再第19頁,共51頁,2024年2月25日,星期天⒌可測(cè)函數(shù)與簡單函數(shù)的關(guān)系
可測(cè)函數(shù)f(x)總可表示成一列簡單函數(shù)的極限MmMmMmn0第20頁,共51頁,2024年2月25日,星期天例:設(shè)f(x)是R上連續(xù)函數(shù),g(x)是E上可測(cè)函數(shù),則f(g(x))是可測(cè)函數(shù)。
證明:要證f(g(x))是可測(cè)函數(shù),只要證對(duì)任意a,E[fg>a]={x|f(g(x))>a}可測(cè)即可,g可測(cè)f連續(xù){x|f(g(x))>a}=(fg)-1((a,+∞))
=g-1(f-1((a,+∞)))f-1((a,+∞))=第21頁,共51頁,2024年2月25日,星期天第二節(jié)
可測(cè)函數(shù)的收斂性第三章
可測(cè)函數(shù)
第22頁,共51頁,2024年2月25日,星期天⒈函數(shù)列的幾種收斂定義
⑵一致收斂:注:近似地說一致收斂是函數(shù)列收斂慢的程度能有個(gè)控制
近似地說一致連續(xù)是函數(shù)圖象陡的程度能有個(gè)控制fn(x)=xn⑴點(diǎn)點(diǎn)收斂:記作第23頁,共51頁,2024年2月25日,星期天1-δ例:函數(shù)列fn(x)=xn,n=1,2,…
在(0,1)上處處收斂到f(x)=0,但不一致收斂,但去掉一小測(cè)度集合(1-δ,1),在留下的集合上一致收斂fn(x)=xn第24頁,共51頁,2024年2月25日,星期天⑶幾乎處處收斂:記作
(almosteverywhere)即:去掉某個(gè)零測(cè)度集,在留下的集合上處處收斂
即:去掉某個(gè)?。ㄈ我庑。y(cè)度集,在留下的集合上一致收斂
⑷幾乎一致收斂:記作
(almostuniformly)第25頁,共51頁,2024年2月25日,星期天⑸依測(cè)度收斂:記作注:從定義可看出,幾乎處處收斂強(qiáng)調(diào)的是在點(diǎn)上函數(shù)值的收斂(除一零測(cè)度集外)依測(cè)度收斂并不
指出函數(shù)列在哪個(gè)點(diǎn)上的收斂,其要點(diǎn)在于誤差超過σ的點(diǎn)所成的集的測(cè)度應(yīng)隨n趨于無窮而趨于零,而不論點(diǎn)集的位置狀態(tài)如何第26頁,共51頁,2024年2月25日,星期天不依測(cè)度收斂依測(cè)度收斂第27頁,共51頁,2024年2月25日,星期天⒉幾種收斂的區(qū)別
說明:當(dāng)n越大,取1的點(diǎn)越多,故{fn(x)}在R+上處處收斂于1
(1)處處收斂但不依測(cè)度收斂n
在R+上處處收斂于
f(x)=1,所以{fn(x)}在R+上不依測(cè)度收斂于1,另外{fn}不幾乎一致收斂于1第28頁,共51頁,2024年2月25日,星期天fn不幾乎一致收斂于f幾乎一致收斂:記作
(almostuniformly)即:去掉某個(gè)?。ㄈ我庑。y(cè)度集,在留下的集合上一致收斂
即:去掉
測(cè)度集,在留下的集合上仍不一致收斂
任意
(
)適當(dāng)小小第29頁,共51頁,2024年2月25日,星期天fn不幾乎一致收斂于f即:去掉任意?。ㄟm當(dāng)?。y(cè)度集,在留下的集合上仍不一致收斂
不幾乎一致收斂于f(x)=1n第30頁,共51頁,2024年2月25日,星期天(2)依測(cè)度收斂但處處不收斂01f1f601/4?3/4101/4?3/4101/4?3/4101/4?3/41f7f5f40?1f30?1f201/81/4?1f8第31頁,共51頁,2024年2月25日,星期天依測(cè)度收斂但處處不收斂⑵
取E=(0,1],n=2k+i,0≤i<2k,k=0,1,2,3,…
說明:對(duì)任何x∈(0,1],{fn(x)}有兩個(gè)子列,一個(gè)恒為1,一個(gè)恒為0,所以{fn(x)}在(0,1]上處處不收斂;第32頁,共51頁,2024年2月25日,星期天例:函數(shù)列fn(x)=xn在(0,1)上處處收斂到f(x)=0,但不一致收斂,但去掉一小測(cè)度集合(1-δ,1),在留下的集合上一致收斂收斂的聯(lián)系(葉果洛夫定理的引入)1-δfn(x)=xn第33頁,共51頁,2024年2月25日,星期天⒊三種收斂的聯(lián)系
即:去掉某個(gè)?。ㄈ我庑。y(cè)度集,在留下的集合上一致收斂
⑴幾乎處處收斂與幾乎一致收斂(葉果洛夫定理)
設(shè)mE<+∞,fn
,f在E上幾乎處處有限且可測(cè),
(即:可測(cè)函數(shù)列的收斂“基本上”是一致收斂)即:去掉某個(gè)零測(cè)度集,在留下的集合上處處收斂
第34頁,共51頁,2024年2月25日,星期天第35頁,共51頁,2024年2月25日,星期天引理:設(shè)mE<+∞,fn
,f在E上幾乎處處有限且可測(cè),證明:由于
為零測(cè)度集,故不妨令
fn
,f在E上處處有限,從而有:關(guān)于N單調(diào)減小第36頁,共51頁,2024年2月25日,星期天幾乎處處收斂與依測(cè)度收斂(Lebesgue定理)設(shè)mE<+∞,fn
,f在E上幾乎處處有限且可測(cè),第37頁,共51頁,2024年2月25日,星期天第三節(jié)
可測(cè)函數(shù)結(jié)構(gòu)
Lusin定理
第三章
可測(cè)函數(shù)
第38頁,共51頁,2024年2月25日,星期天可測(cè)函數(shù)簡單函數(shù)是可測(cè)函數(shù)
可測(cè)函數(shù)總可表示成一列簡單函數(shù)的極限(當(dāng)可測(cè)函數(shù)有界時(shí),可作到一致收斂)問:可測(cè)函數(shù)是否可表示成一列連續(xù)函數(shù)的極限?可測(cè)集E上的連續(xù)函數(shù)定為可測(cè)函數(shù)
第39頁,共51頁,2024年2月25日,星期天魯津定理實(shí)變函數(shù)的三條原理(J.E.Littlewood)(1)任一可測(cè)集差不多就是開集(至多可數(shù)個(gè)開區(qū)間的并)設(shè)f(x)為E上幾乎處處有限的可測(cè)函數(shù),則
使得
m(E-F)<ε且f(x)在F上連續(xù)。
(去掉一小測(cè)度集,在留下的集合上成為連續(xù)函數(shù))即:可測(cè)函數(shù)“基本上”是連續(xù)函數(shù)(3)任一點(diǎn)點(diǎn)收斂的可測(cè)函數(shù)列集差不多就是一致收斂列(2)任一可測(cè)函數(shù)差不多就是連續(xù)函數(shù)第40頁,共51頁,2024年2月25日,星期天魯津定理的證明證明:由于mE[|f|=+∞]=0,故不妨令f(x)為有限函數(shù)(1)當(dāng)f(x)為簡單函數(shù)時(shí),
當(dāng)x∈Ei時(shí),f(x)=ci,所以f(x)在Fi上連續(xù),而Fi為兩兩不交閉集,故f(x)在
上連續(xù)顯然F為閉集,且有第41頁,共51頁,2024年2月25日,星期天對(duì)f(x)在F連續(xù)的說明
若f(x)在Fi上連續(xù),而
Fi為兩兩不交閉集,則f(x)在
上連續(xù)故對(duì)任意x`∈O(x,δ)∩F,有|f(x`)-f(x)|=0,故f連續(xù)
Fi0()x證明:任取則存在
i0,使得x∈Fi0,f(x)=ci0,又Fi為兩兩不交閉集,從而x在開集
中所以存在δ>0,使得第42頁,共51頁,2024年2月25日,星期天對(duì)f(x)在F連續(xù)的說明說明:取閉集的原因在于閉集的余集為開集,開集中的點(diǎn)為內(nèi)點(diǎn),從而可取x∈Fi足夠小的鄰域不含其他Fi
中的點(diǎn)函數(shù)在每一塊上為常值,故在每一塊上都連續(xù),但函數(shù)在R上處處不連續(xù)
條件Fi為兩兩不交閉集必不可少,如:第43頁,共51頁,2024年2月25日,星期天魯津定理的證明(2)當(dāng)f(x)為有界可測(cè)函數(shù)時(shí),存在簡單函數(shù)列{φn(x)}在E上一致收斂于f(x),由{φn(x)}在F連續(xù)及一致收斂于f(x)
,易知f(x)在閉集F上連續(xù)。利用(1)的結(jié)果知第44頁,共51頁,2024年2月25日,星期天魯津定理的證明則g(x)為有界可測(cè)函數(shù),應(yīng)用(2)即得我們的結(jié)果(連續(xù)函數(shù)類關(guān)于四則運(yùn)算封閉)(3)當(dāng)f(x)為一般可測(cè)函數(shù)時(shí),作變換第45頁,共51頁,2024年2月25日,星期天注:(1)魯津定理推論魯津定理(限制定義域)(即:去掉某個(gè)小測(cè)度集,在留下的集合上連續(xù))(在某個(gè)小測(cè)度集上改變?nèi)≈挡⒀a(bǔ)充定義變成連續(xù)函數(shù))若f(x)為
上幾乎處處有限的可測(cè)函數(shù),使得在F上g(x)=f(x)且m(E-F)<ε(對(duì)n維空間也成立)則
及R上的連續(xù)函數(shù)g(x)第46頁,共51頁,2024年2月25日,星期天開集的余集是閉集閉集的余集是開集aibi直線上的開集構(gòu)造
直線上的任一非空開集都可唯一地表示成有限個(gè)或可數(shù)個(gè)互不相交的開區(qū)間的并魯津定理推論證明的說明
魯津定理:設(shè)f(x)為E上幾乎處處有限的可測(cè)函數(shù),則
使得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度電商虛擬現(xiàn)實(shí)技術(shù)應(yīng)用委托經(jīng)營協(xié)議3篇
- 二零二五年度奶粉品牌線上直播帶貨代理合同
- 二零二五版智能停車場(chǎng)建設(shè)工程承包簡易合同3篇
- 二零二五年度公益活動(dòng)布展策劃與實(shí)施協(xié)議3篇
- 2025年度煤炭行業(yè)信用風(fēng)險(xiǎn)管理合作協(xié)議書
- 2025年綠色建筑項(xiàng)目泥水工安全責(zé)任合同
- 二零二五年度馬鈴薯種植保險(xiǎn)及風(fēng)險(xiǎn)防控合作協(xié)議4篇
- 二零二五年船舶空調(diào)系統(tǒng)改造與環(huán)保驗(yàn)收合同3篇
- 個(gè)人住宅室內(nèi)裝修設(shè)計(jì)服務(wù)合同(2024版)3篇
- 2025年度化肥電商平臺(tái)合作與服務(wù)協(xié)議2篇
- 物流無人機(jī)垂直起降場(chǎng)選址與建設(shè)規(guī)范
- 肺炎臨床路徑
- 外科手術(shù)鋪巾順序
- 創(chuàng)新者的窘境讀書課件
- 綜合素質(zhì)提升培訓(xùn)全面提升個(gè)人綜合素質(zhì)
- 如何克服高中生的社交恐懼癥
- 聚焦任務(wù)的學(xué)習(xí)設(shè)計(jì)作業(yè)改革新視角
- 移動(dòng)商務(wù)內(nèi)容運(yùn)營(吳洪貴)任務(wù)三 APP的品牌建立與價(jià)值提供
- 電子競(jìng)技范文10篇
- 食堂服務(wù)質(zhì)量控制方案與保障措施
- VI設(shè)計(jì)輔助圖形設(shè)計(jì)(2022版)
評(píng)論
0/150
提交評(píng)論