廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第1頁
廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第2頁
廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第3頁
廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第4頁
廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

廣東省潮州市名校2024屆中考考前最后一卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,AD是⊙O的弦,過點(diǎn)O作AD的垂線,垂足為點(diǎn)C,交⊙O于點(diǎn)F,過點(diǎn)A作⊙O的切線,交OF的延長(zhǎng)線于點(diǎn)E.若CO=1,AD=2,則圖中陰影部分的面積為A.4-π B.2-πC.4-π D.2-π2.小明將某圓錐形的冰淇淋紙?zhí)籽厮囊粭l母線展開若不考慮接縫,它是一個(gè)半徑為12cm,圓心角為的扇形,則A.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmB.圓錐形冰淇淋紙?zhí)椎牡酌姘霃綖?cmC.圓錐形冰淇淋紙?zhí)椎母邽镈.圓錐形冰淇淋紙?zhí)椎母邽?.下列調(diào)查中,調(diào)查方式選擇合理的是()A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇全面調(diào)查B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇全面調(diào)查C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選擇抽樣調(diào)查D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查4.下列運(yùn)算正確的是()A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x35.如圖,有一塊含有30°角的直角三角板的兩個(gè)頂點(diǎn)放在直尺的對(duì)邊上.如果∠2=44°,那么∠1的度數(shù)是()A.14°B.15°C.16°D.17°6.某單位組織職工開展植樹活動(dòng),植樹量與人數(shù)之間關(guān)系如圖,下列說法不正確的是()A.參加本次植樹活動(dòng)共有30人 B.每人植樹量的眾數(shù)是4棵C.每人植樹量的中位數(shù)是5棵 D.每人植樹量的平均數(shù)是5棵7.在Rt△ABC中,∠C=90°,那么sin∠B等于()A. B. C. D.8.某廣場(chǎng)上有一個(gè)形狀是平行四邊形的花壇(如圖),分別種有紅、黃、藍(lán)、綠、橙、紫6種顏色的花.如果有AB∥EF∥DC,BC∥GH∥AD,那么下列說法錯(cuò)誤的是()A.紅花、綠花種植面積一定相等B.紫花、橙花種植面積一定相等C.紅花、藍(lán)花種植面積一定相等D.藍(lán)花、黃花種植面積一定相等9.如圖,函數(shù)y=的圖象記為c1,它與x軸交于點(diǎn)O和點(diǎn)A1;將c1繞點(diǎn)A1旋轉(zhuǎn)180°得c2,交x軸于點(diǎn)A2;將c2繞點(diǎn)A2旋轉(zhuǎn)180°得c3,交x軸于點(diǎn)A3…如此進(jìn)行下去,若點(diǎn)P(103,m)在圖象上,那么m的值是()A.﹣2 B.2 C.﹣3 D.410.cos30°的相反數(shù)是()A. B. C. D.11.下列圖形中,不是中心對(duì)稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形12.下列計(jì)算正確的是()A.﹣= B.=±2C.a(chǎn)6÷a2=a3 D.(﹣a2)3=﹣a6二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.將半徑為5,圓心角為144°的扇形圍成一個(gè)圈錐的側(cè)面,則這個(gè)圓錐的底面半徑為.14.反比例函數(shù)y=的圖像經(jīng)過點(diǎn)(2,4),則k的值等于__________.15.如圖,在中,,,為邊的高,點(diǎn)在軸上,點(diǎn)在軸上,點(diǎn)在第一象限,若從原點(diǎn)出發(fā),沿軸向右以每秒1個(gè)單位長(zhǎng)的速度運(yùn)動(dòng),則點(diǎn)隨之沿軸下滑,并帶動(dòng)在平面內(nèi)滑動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,當(dāng)?shù)竭_(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng)連接,線段的長(zhǎng)隨的變化而變化,當(dāng)最大時(shí),______.當(dāng)?shù)倪吪c坐標(biāo)軸平行時(shí),______.16.已知:如圖,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.將△AOB繞頂點(diǎn)O,按順時(shí)針方向旋轉(zhuǎn)到△A1OB1處,此時(shí)線段OB1與AB的交點(diǎn)D恰好為AB的中點(diǎn),則線段B1D=__________cm.17.在平面直角坐標(biāo)系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長(zhǎng)為,則a的值是_____.18.閱讀材料:設(shè)=(x1,y1),=(x2,y2),如果∥,則x1?y2=x2?y1.根據(jù)該材料填空:已知=(2,3),=(4,m),且∥,則m=_____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽光體育活動(dòng).某中學(xué)就“學(xué)生體育活動(dòng)興趣愛好”的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:(1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有______人,在扇形統(tǒng)計(jì)圖中,“乒乓球”的百分比為______%,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有______人喜歡籃球項(xiàng)目.(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.(3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加?;@球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.20.(6分)如圖,在平面直角坐標(biāo)系xOy中,函數(shù)()的圖象經(jīng)過點(diǎn),AB⊥x軸于點(diǎn)B,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,CD⊥x軸于點(diǎn)D,△ABD的面積為8.(1)求m,n的值;(2)若直線(k≠0)經(jīng)過點(diǎn)C,且與x軸,y軸的交點(diǎn)分別為點(diǎn)E,F(xiàn),當(dāng)時(shí),求點(diǎn)F的坐標(biāo).21.(6分)某學(xué)校為增加體育館觀眾坐席數(shù)量,決定對(duì)體育館進(jìn)行施工改造.如圖,為體育館改造的截面示意圖.已知原座位區(qū)最高點(diǎn)A到地面的鉛直高度AC長(zhǎng)度為15米,原坡面AB的傾斜角∠ABC為45°,原坡腳B與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離BD為5米.如果按照施工方提供的設(shè)計(jì)方案施工,新座位區(qū)最高點(diǎn)E到地面的鉛直高度EG長(zhǎng)度保持15米不變,使A、E兩點(diǎn)間距離為2米,使改造后坡面EF的傾斜角∠EFG為37°.若學(xué)校要求新坡腳F需與場(chǎng)館中央的運(yùn)動(dòng)區(qū)邊界的安全距離FD至少保持2.5米(即FD≥2.5),請(qǐng)問施工方提供的設(shè)計(jì)方案是否滿足安全要求呢?請(qǐng)說明理由.(參考數(shù)據(jù):sin37°≈,tan37°≈)22.(8分)尺規(guī)作圖:校園有兩條路OA、OB,在交叉路口附近有兩塊宣傳牌C、D,學(xué)校準(zhǔn)備在這里安裝一盞路燈,要求燈柱的位置P離兩塊宣傳牌一樣遠(yuǎn),并且到兩條路的距離也一樣遠(yuǎn),請(qǐng)你幫助畫出燈柱的位置P.(不寫畫圖過程,保留作圖痕跡)23.(8分)八年級(jí)一班開展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問卷調(diào)查,問卷設(shè)置了“小說”“戲劇”“散文”“其他”四個(gè)類型,每位同學(xué)僅選一項(xiàng),根據(jù)調(diào)查結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.類別頻數(shù)(人數(shù))頻率小說0.5戲劇4散文100.25其他6合計(jì)1根據(jù)圖表提供的信息,解答下列問題:八年級(jí)一班有多少名學(xué)生?請(qǐng)補(bǔ)全頻數(shù)分布表,并求出扇形統(tǒng)計(jì)圖中“其他”類所占的百分比;在調(diào)查問卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從以上四位同學(xué)中任意選出2名同學(xué)參加學(xué)校的戲劇興趣小組,請(qǐng)用畫樹狀圖或列表法的方法,求選取的2人恰好是乙和丙的概率.24.(10分)在學(xué)習(xí)了矩形這節(jié)內(nèi)容之后,明明同學(xué)發(fā)現(xiàn)生活中的很多矩形都很特殊,如我們的課本封面、A4的打印紙等,這些矩形的長(zhǎng)與寬之比都為:1,我們將具有這類特征的矩形稱為“完美矩形”如圖(1),在“完美矩形”ABCD中,點(diǎn)P為AB邊上的定點(diǎn),且AP=AD.求證:PD=AB.如圖(2),若在“完美矩形“ABCD的邊BC上有一動(dòng)點(diǎn)E,當(dāng)?shù)闹凳嵌嗌贂r(shí),△PDE的周長(zhǎng)最???如圖(3),點(diǎn)Q是邊AB上的定點(diǎn),且BQ=BC.已知AD=1,在(2)的條件下連接DE并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)F,連接CF,G為CF的中點(diǎn),M、N分別為線段QF和CD上的動(dòng)點(diǎn),且始終保持QM=CN,MN與DF相交于點(diǎn)H,請(qǐng)問GH的長(zhǎng)度是定值嗎?若是,請(qǐng)求出它的值,若不是,請(qǐng)說明理由.25.(10分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.26.(12分)如圖,AE∥FD,AE=FD,B、C在直線EF上,且BE=CF,(1)求證:△ABE≌△DCF;(2)試證明:以A、B、D、C為頂點(diǎn)的四邊形是平行四邊形.27.(12分)已知點(diǎn)O是正方形ABCD對(duì)角線BD的中點(diǎn).(1)如圖1,若點(diǎn)E是OD的中點(diǎn),點(diǎn)F是AB上一點(diǎn),且使得∠CEF=90°,過點(diǎn)E作ME∥AD,交AB于點(diǎn)M,交CD于點(diǎn)N.①∠AEM=∠FEM;②點(diǎn)F是AB的中點(diǎn);(2)如圖2,若點(diǎn)E是OD上一點(diǎn),點(diǎn)F是AB上一點(diǎn),且使,請(qǐng)判斷△EFC的形狀,并說明理由;(3)如圖3,若E是OD上的動(dòng)點(diǎn)(不與O,D重合),連接CE,過E點(diǎn)作EF⊥CE,交AB于點(diǎn)F,當(dāng)時(shí),請(qǐng)猜想的值(請(qǐng)直接寫出結(jié)論).

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】

由S陰影=S△OAE-S扇形OAF,分別求出S△OAE、S扇形OAF即可;【詳解】連接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

則∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S陰影=S△OAE-S扇形OAF=×2×2-.故選B.【點(diǎn)睛】考查了切線的判定和性質(zhì);能夠通過作輔助線將所求的角轉(zhuǎn)移到相應(yīng)的直角三角形中,是解答此題的關(guān)鍵要證某線是圓的切線,對(duì)于切線的判定:已知此線過圓上某點(diǎn),連接圓心與這點(diǎn)(即為半徑),再證垂直即可.2、C【解析】

根據(jù)圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng),列出方程求出圓錐的底面半徑,再利用勾股定理求出圓錐的高.【詳解】解:半徑為12cm,圓心角為的扇形弧長(zhǎng)是:,

設(shè)圓錐的底面半徑是rcm,

則,

解得:.

即這個(gè)圓錐形冰淇淋紙?zhí)椎牡酌姘霃绞?cm.

圓錐形冰淇淋紙?zhí)椎母邽椋?/p>

故選:C.【點(diǎn)睛】本題綜合考查有關(guān)扇形和圓錐的相關(guān)計(jì)算解題思路:解決此類問題時(shí)要緊緊抓住兩者之間的兩個(gè)對(duì)應(yīng)關(guān)系:圓錐的母線長(zhǎng)等于側(cè)面展開圖的扇形半徑;圓錐的底面周長(zhǎng)等于側(cè)面展開圖的扇形弧長(zhǎng)正確對(duì)這兩個(gè)關(guān)系的記憶是解題的關(guān)鍵.3、D【解析】

A.為了解襄陽市初中每天鍛煉所用時(shí)間,選擇抽樣調(diào)查,故A不符合題意;B.為了解襄陽市電視臺(tái)《襄陽新聞》欄目的收視率,選擇抽樣調(diào)查,故B不符合題意;C.為了解神舟飛船設(shè)備零件的質(zhì)量情況,選普查,故C不符合題意;D.為了解一批節(jié)能燈的使用壽命,選擇抽樣調(diào)查,故D符合題意;故選D.4、B【解析】分析:根據(jù)完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項(xiàng)以及同底數(shù)冪的除法的運(yùn)算法則進(jìn)行計(jì)算即可判斷出結(jié)果.詳解:A.(a﹣3)2=a2﹣6a+9,故該選項(xiàng)錯(cuò)誤;B.()﹣1=2,故該選項(xiàng)正確;C.x與y不是同類項(xiàng),不能合并,故該選項(xiàng)錯(cuò)誤;D.x6÷x2=x6-2=x4,故該選項(xiàng)錯(cuò)誤.故選B.點(diǎn)睛:可不是主要考查了完全平方公式、負(fù)整數(shù)指數(shù)冪,合并同類項(xiàng)以及同度數(shù)冪的除法的運(yùn)算,熟記它們的運(yùn)算法則是解題的關(guān)鍵.5、C【解析】

依據(jù)∠ABC=60°,∠2=44°,即可得到∠EBC=16°,再根據(jù)BE∥CD,即可得出∠1=∠EBC=16°.【詳解】如圖,∵∠ABC=60°,∠2=44°,∴∠EBC=16°,∵BE∥CD,∴∠1=∠EBC=16°,故選:C.【點(diǎn)睛】本題主要考查了平行線的性質(zhì),解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.6、D【解析】試題解析:A、∵4+10+8+6+2=30(人),∴參加本次植樹活動(dòng)共有30人,結(jié)論A正確;B、∵10>8>6>4>2,∴每人植樹量的眾數(shù)是4棵,結(jié)論B正確;C、∵共有30個(gè)數(shù),第15、16個(gè)數(shù)為5,∴每人植樹量的中位數(shù)是5棵,結(jié)論C正確;D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),∴每人植樹量的平均數(shù)約是4.73棵,結(jié)論D不正確.故選D.考點(diǎn):1.條形統(tǒng)計(jì)圖;2.加權(quán)平均數(shù);3.中位數(shù);4.眾數(shù).7、A【解析】

根據(jù)銳角三角函數(shù)的定義得出sinB等于∠B的對(duì)邊除以斜邊,即可得出答案.【詳解】根據(jù)在△ABC中,∠C=90°,那么sinB==,故答案選A.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是銳角三角函數(shù)的定義,解題的關(guān)鍵是熟練的掌握銳角三角函數(shù)的定義.8、C【解析】

圖中,線段GH和EF將大平行四邊形ABCD分割成了四個(gè)小平行四邊形,平行四邊形的對(duì)角線平分該平行四邊形的面積,據(jù)此進(jìn)行解答即可.【詳解】解:由已知得題圖中幾個(gè)四邊形均是平行四邊形.又因?yàn)槠叫兴倪呅蔚囊粭l對(duì)角線將平行四邊形分成兩個(gè)全等的三角形,即面積相等,故紅花和綠花種植面積一樣大,藍(lán)花和黃花種植面積一樣大,紫花和橙花種植面積一樣大.故選擇C.【點(diǎn)睛】本題考查了平行四邊形的定義以及性質(zhì),知道對(duì)角線平分平行四邊形是解題關(guān)鍵.9、C【解析】

求出與x軸的交點(diǎn)坐標(biāo),觀察圖形可知第奇數(shù)號(hào)拋物線都在x軸上方,然后求出到拋物線平移的距離,再根據(jù)向右平移橫坐標(biāo)加表示出拋物線的解析式,然后把點(diǎn)P的坐標(biāo)代入計(jì)算即可得解.【詳解】令,則=0,解得,,由圖可知,拋物線在x軸下方,相當(dāng)于拋物線向右平移4×(26?1)=100個(gè)單位得到得到,再將繞點(diǎn)旋轉(zhuǎn)180°得,此時(shí)的解析式為y=(x?100)(x?100?4)=(x?100)(x?104),在第26段拋物線上,m=(103?100)(103?104)=?3.故答案是:C.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是二次函數(shù)圖象與幾何變換,解題關(guān)鍵是根據(jù)題意得到p點(diǎn)所在函數(shù)表達(dá)式.10、C【解析】

先將特殊角的三角函數(shù)值代入求解,再求出其相反數(shù).【詳解】∵cos30°=,∴cos30°的相反數(shù)是,故選C.【點(diǎn)睛】本題考查了特殊角的三角函數(shù)值,解答本題的關(guān)鍵是掌握幾個(gè)特殊角的三角函數(shù)值以及相反數(shù)的概念.11、C【解析】

根據(jù)中心對(duì)稱圖形的定義依次判斷各項(xiàng)即可解答.【詳解】選項(xiàng)A、平行四邊形是中心對(duì)稱圖形;選項(xiàng)B、圓是中心對(duì)稱圖形;選項(xiàng)C、等邊三角形不是中心對(duì)稱圖形;選項(xiàng)D、正六邊形是中心對(duì)稱圖形;故選C.【點(diǎn)睛】本題考查了中心對(duì)稱圖形的判定,熟知中心對(duì)稱圖形的定義是解決問題的關(guān)鍵.12、D【解析】

根據(jù)二次根式的運(yùn)算法則,同類二次根式的判斷,開算術(shù)平方根,同底數(shù)冪的除法及冪的乘方運(yùn)算.【詳解】A.不是同類二次根式,不能合并,故A選項(xiàng)錯(cuò)誤;B.=2≠±2,故B選項(xiàng)錯(cuò)誤;C.

a6÷a2=a4≠a3,故C選項(xiàng)錯(cuò)誤;D.

(?a2)3=?a6,故D選項(xiàng)正確.故選D.【點(diǎn)睛】本題主要考查了二次根式的運(yùn)算法則,開算術(shù)平方根,同底數(shù)冪的除法及冪的乘方運(yùn)算,熟記法則是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】考點(diǎn):圓錐的計(jì)算.分析:求得扇形的弧長(zhǎng),除以1π即為圓錐的底面半徑.解:扇形的弧長(zhǎng)為:=4π;這個(gè)圓錐的底面半徑為:4π÷1π=1.點(diǎn)評(píng):考查了扇形的弧長(zhǎng)公式;圓的周長(zhǎng)公式;用到的知識(shí)點(diǎn)為:圓錐的弧長(zhǎng)等于底面周長(zhǎng).14、1【解析】解:∵點(diǎn)(2,4)在反比例函數(shù)的圖象上,∴,即k=1.故答案為1.點(diǎn)睛:本題考查的是反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特點(diǎn),即反比例函數(shù)圖象上各點(diǎn)的坐標(biāo)一定適合此函數(shù)的解析式.15、4【解析】

(1)由等腰三角形的性質(zhì)可得AD=BD,從而可求出OD=4,然后根據(jù)當(dāng)O,D,C共線時(shí),OC取最大值求解即可;(2)根據(jù)等腰三角形的性質(zhì)求出CD,分AC∥y軸、BC∥x軸兩種情況,根據(jù)相似三角形的判定定理和性質(zhì)定理列式計(jì)算即可.【詳解】(1),,當(dāng)O,D,C共線時(shí),OC取最大值,此時(shí)OD⊥AB.∵,∴△AOB為等腰直角三角形,∴;(2)∵BC=AC,CD為AB邊的高,∴∠ADC=90°,BD=DA=AB=4,∴CD==3,當(dāng)AC∥y軸時(shí),∠ABO=∠CAB,∴Rt△ABO∽R(shí)t△CAD,∴,即,解得,t=,當(dāng)BC∥x軸時(shí),∠BAO=∠CBD,∴Rt△ABO∽R(shí)t△BCD,∴,即,解得,t=,

則當(dāng)t=或時(shí),△ABC的邊與坐標(biāo)軸平行.

故答案為t=或.【點(diǎn)睛】本題考查的是直角三角形的性質(zhì),等腰三角形的性質(zhì),相似三角形的判定和性質(zhì),掌握相似三角形的判定定理和性質(zhì)定理、靈活運(yùn)用分情況討論思想是解題的關(guān)鍵.16、1.1【解析】試題解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵點(diǎn)D為AB的中點(diǎn),∴OD=AB=2.1cm.∵將△AOB繞頂點(diǎn)O,按順時(shí)針方向旋轉(zhuǎn)到△A1OB1處,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.故答案為1.1.17、2+【解析】

試題分析:過P點(diǎn)作PE⊥AB于E,過P點(diǎn)作PC⊥x軸于C,交AB于D,連接PA.∵PE⊥AB,AB=2,半徑為2,∴AE=AB=,PA=2,根據(jù)勾股定理得:PE=1,∵點(diǎn)A在直線y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=∵⊙P的圓心是(2,a),∴a=PD+DC=2+.【點(diǎn)睛】本題主要考查的就是垂徑定理的應(yīng)用以及直角三角形勾股定理的應(yīng)用,屬于中等難度的題型.解決這個(gè)問題的關(guān)鍵就是在于作出輔助線,將所求的線段放入到直角三角形中.本題還需要注意的一個(gè)隱含條件就是:直線y=x或直線y=-x與x軸所形成的銳角為45°,這一個(gè)條件的應(yīng)用也是很重要的.18、6【解析】根據(jù)題意得,2m=3×4,解得m=6,故答案為6.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)5,20,80;(2)圖見解析;(3).【解析】【分析】(1)根據(jù)喜歡跳繩的人數(shù)以及所占的比例求得總?cè)藬?shù),然后用總?cè)藬?shù)減去喜歡跳繩、乒乓球、其它的人數(shù)即可得;(2)用乒乓球的人數(shù)除以總?cè)藬?shù)即可得;(3)用800乘以喜歡籃球人數(shù)所占的比例即可得;(4)根據(jù)(1)中求得的喜歡籃球的人數(shù)即可補(bǔ)全條形圖;(5)畫樹狀圖可得所有可能的情況,根據(jù)樹狀圖求得2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果,根據(jù)概率公式進(jìn)行計(jì)算即可.【詳解】(1)調(diào)查的總?cè)藬?shù)為20÷40%=50(人),喜歡籃球項(xiàng)目的同學(xué)的人數(shù)=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比==20%;(3)800×=80,所以估計(jì)全校學(xué)生中有80人喜歡籃球項(xiàng)目;(4)如圖所示,(5)畫樹狀圖為:共有20種等可能的結(jié)果數(shù),其中所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的結(jié)果數(shù)為12,所以所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率=.20、(1)m=8,n=-2;(2)點(diǎn)F的坐標(biāo)為,【解析】分析:(1)利用三角形的面積公式構(gòu)建方程求出n,再利用待定系數(shù)法求出m的的值即可;(2)分兩種情形分別求解如①圖,當(dāng)k<0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為,.②圖中,當(dāng)k>0時(shí),設(shè)直線y=kx+b與x軸,y軸的交點(diǎn)分別為點(diǎn),.詳解:(1)如圖②∵點(diǎn)A的坐標(biāo)為,點(diǎn)C與點(diǎn)A關(guān)于原點(diǎn)O對(duì)稱,∴點(diǎn)C的坐標(biāo)為.∵AB⊥x軸于點(diǎn)B,CD⊥x軸于點(diǎn)D,∴B,D兩點(diǎn)的坐標(biāo)分別為,.∵△ABD的面積為8,,∴.解得.∵函數(shù)()的圖象經(jīng)過點(diǎn),∴.(2)由(1)得點(diǎn)C的坐標(biāo)為.①如圖,當(dāng)時(shí),設(shè)直線與x軸,y軸的交點(diǎn)分別為點(diǎn),.由CD⊥x軸于點(diǎn)D可得CD∥.∴△CD∽△O.∴.∵,∴.∴.∴點(diǎn)的坐標(biāo)為.②如圖,當(dāng)時(shí),設(shè)直線與x軸,y軸的交點(diǎn)分別為點(diǎn),.同理可得CD∥,.∵,∴為線段的中點(diǎn),.∴.∴點(diǎn)的坐標(biāo)為.綜上所述,點(diǎn)F的坐標(biāo)為,.點(diǎn)睛:本題考查了反比例函數(shù)綜合題、一次函數(shù)的應(yīng)用、三角形的面積公式等知識(shí),解題的關(guān)鍵是會(huì)用方程的思想思考問題,會(huì)用分類討論的思想思考問題,屬于中考?jí)狠S題.21、不滿足安全要求,理由見解析.【解析】

在Rt△ABC中,由∠ACB=90°,AC=15m,∠ABC=45°可求得BC=15m;在Rt△EGD中,由∠EGD=90°,EG=15m,∠EFG=37°,可解得GF=20m;通過已知條件可證得四邊形EACG是矩形,從而可得GC=AE=2m;這樣可解得:DF=GC+BC+BD-GF=2+15+5-20=2<2.5,由此可知:“設(shè)計(jì)方案不滿足安全要求”.【詳解】解:施工方提供的設(shè)計(jì)方案不滿足安全要求,理由如下:在Rt△ABC中,AC=15m,∠ABC=45°,∴BC==15m.在Rt△EFG中,EG=15m,∠EFG=37°,∴GF=≈=20m.∵EG=AC=15m,AC⊥BC,EG⊥BC,∴EG∥AC,∴四邊形EGCA是矩形,∴GC=EA=2m,∴DF=GC+BC+BD-GF=2+15+5-20=2<2.5.∴施工方提供的設(shè)計(jì)方案不滿足安全要求.22、見解析.【解析】

分別作線段CD的垂直平分線和∠AOB的角平分線,它們的交點(diǎn)即為點(diǎn)P.【詳解】如圖,點(diǎn)P為所作.【點(diǎn)睛】本題考查了作圖?應(yīng)用與設(shè)計(jì)作圖,熟知角平分線的性質(zhì)與線段垂直平分線的性質(zhì)是解答此題的關(guān)鍵.23、(1)41(2)15%(3)【解析】

(1)用散文的頻數(shù)除以其頻率即可求得樣本總數(shù);(2)根據(jù)其他類的頻數(shù)和總?cè)藬?shù)求得其百分比即可;(3)畫樹狀圖得出所有等可能的情況數(shù),找出恰好是丙與乙的情況,即可確定出所求概率.【詳解】(1)∵喜歡散文的有11人,頻率為1.25,∴m=11÷1.25=41;(2)在扇形統(tǒng)計(jì)圖中,“其他”類所占的百分比為×111%=15%,故答案為15%;(3)畫樹狀圖,如圖所示:所有等可能的情況有12種,其中恰好是丙與乙的情況有2種,∴P(丙和乙)==.24、(1)證明見解析(2)(3)【解析】

(1)根據(jù)題中“完美矩形”的定義設(shè)出AD與AB,根據(jù)AP=AD,利用勾股定理表示出PD,即可得證;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,表示出AB與CD,由AB-AP表示出BP,由對(duì)稱的性質(zhì)得到BP=BP′,由平行得比例,求出所求比值即可;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,由等式的性質(zhì)得到MF=DN,利用AAS得到△MFH≌△NDH,利用全等三角形對(duì)應(yīng)邊相等得到FH=DH,再由G為CF中點(diǎn),得到HG為中位線,利用中位線性質(zhì)求出GH的長(zhǎng)即可.【詳解】(1)在圖1中,設(shè)AD=BC=a,則有AB=CD=a,∵四邊形ABCD是矩形,∴∠A=90°,∵PA=AD=BC=a,∴PD==a,∵AB=a,∴PD=AB;(2)如圖,作點(diǎn)P關(guān)于BC的對(duì)稱點(diǎn)P′,連接DP′交BC于點(diǎn)E,此時(shí)△PDE的周長(zhǎng)最小,設(shè)AD=PA=BC=a,則有AB=CD=a,∵BP=AB-PA,∴BP′=BP=a-a,∵BP′∥CD,∴;(3)GH=,理由為:由(2)可知BF=BP=AB-AP,∵AP=AD,∴BF=AB-AD,∵BQ=BC,∴AQ=AB-BQ=AB-BC,∵BC=AD,∴AQ=AB-AD,∴BF=AQ,∴QF=BQ+BF=BQ+AQ=AB,∵AB=CD,∴QF=CD,∵QM=CN,∴QF-QM=CD-CN,即MF=DN,∵M(jìn)F∥DN,∴∠NFH=∠NDH,在△MFH和△NDH中,,∴△MFH≌△NDH(AAS),∴FH=DH,∵G為CF的中點(diǎn),∴GH是△CFD的中位線,∴GH=CD=×2=.【點(diǎn)睛】此題屬于相似綜合題,涉及的知識(shí)有:相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì),勾股定理,三角形中位線性質(zhì),平行線的判定與性質(zhì),熟練掌握相似三角形的性質(zhì)是解本題的關(guān)鍵.25、證明見解析.【解析】

根據(jù)在同圓中等弦對(duì)的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對(duì)的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對(duì)的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點(diǎn)睛】本題利用了在同圓中等弦對(duì)的弧相等,等弧對(duì)的弦,圓周角相等,等量減去等量仍是等量求解.26、(1)證明見解析;(2)證明見解析【解析】(1)根據(jù)平行線性質(zhì)求出∠B=∠C,等量相減求出BE=CF,根據(jù)SAS推出兩三角形全等即可;(2)借助(1)中結(jié)論△ABE≌△DCF,可證出AE平行且等于DF,即可證出結(jié)論.證明:(1)如圖,∵AB∥CD,∴∠B=∠C.∵BF=CE∴BE=CF∵在△ABE與△DCF中,,∴△ABE≌△DCF(SAS);(2)如圖,連接AF、DE.由(1)知,△ABE≌△DCF,∴AE=DF,∠AEB=∠DFC,∴∠AEF=∠DFE,∴AE∥DF,∴以A、F、D、E為頂點(diǎn)的四邊形是平行四邊形.27、(1)①證明見解析;②證明見解析;(2)△EFC是等腰直角三角形.理由見解析;(3).【解析】試題分析:(1)①過點(diǎn)E作EG⊥BC,垂足為G,根據(jù)ASA證明△CEG≌△FEM得CE=FE,再根據(jù)SAS證明△ABE≌△CBE得AE=CE,在△AEF中根據(jù)等腰三角形“三線合一”即可證明結(jié)論成立;②設(shè)AM=x,則AF=2x,在Rt△DEN中,∠EDN=45°,DE=DN=x,DO=2DE=2x,BD=2DO=4x.在Rt△ABD中,∠ADB=45°,AB=BD·sin45°=4x,又AF=2x,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論