




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
二次函數(shù)知識點總結(jié)與典型例題二次函數(shù)知識點總結(jié)及典型例題一、二次函數(shù)的概念和圖像1、二次函數(shù)的概念一般地,如果,那么y叫做x的二次函數(shù)。叫做二次函數(shù)的一般式。2、二次函數(shù)的圖像二次函數(shù)的圖像是一條關(guān)于對稱的曲線,這條曲線叫拋物線。拋物線的主要特征:①有開口方向;②有對稱軸;③有頂點。3、二次函數(shù)圖像的畫法---五點法:二、二次函數(shù)的解析式二次函數(shù)的解析式有三種形式:(1)一般式:(2)頂點式:(3)當(dāng)拋物線與x軸有交點時,即對應(yīng)二次好方程有實根和存在時,根據(jù)二次三項式的分解因式,二次函數(shù)可轉(zhuǎn)化為兩根式。如果沒有交點,則不能這樣表示。三、拋物線中,的作用(1)決定開口方向及開口大小,這與中的完全一樣.(2)和共同決定拋物線對稱軸的位置.由于拋物線的對稱軸是直線,故:①時,對稱軸為軸所在直線;②(即、同號)時,對稱軸在軸左側(cè);③(即、異號)時,對稱軸在軸右側(cè).(3)的大小決定拋物線與軸交點的位置.當(dāng)時,,∴拋物線與軸有且只有一個交點(0,):①,拋物線經(jīng)過原點;②,與軸交于正半軸;③,與軸交于負半軸.以上三點中,當(dāng)結(jié)論和條件互換時,仍成立.如拋物線的對稱軸在軸右側(cè),則.四、二次函數(shù)的性質(zhì)1、二次函數(shù)的性質(zhì)函數(shù)二次函數(shù)圖像a>0a<0y0xy0x性質(zhì)(1)拋物線開口向上,并向上無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側(cè),即當(dāng)x<時,y隨x的增大而減?。辉趯ΨQ軸的右側(cè),即當(dāng)x>時,y隨x的增大而增大,簡記左減右增;(4)拋物線有最低點,當(dāng)x=時,y有最小值,(1)拋物線開口向下,并向下無限延伸;(2)對稱軸是x=,頂點坐標是(,);(3)在對稱軸的左側(cè),即當(dāng)x<時,y隨x的增大而增大;在對稱軸的右側(cè),即當(dāng)x>時,y隨x的增大而減小,簡記左增右減;(4)拋物線有最高點,當(dāng)x=時,y有最大值,五、二次函數(shù)與一元二次方程的關(guān)系一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標。因此一元二次方程中的,在二次函數(shù)中表示圖像與x軸是否有交點。當(dāng)>0時,圖像與x軸有兩個交點;當(dāng)=0時,圖像與x軸有一個交點;當(dāng)<0時,圖像與x軸沒有交點。補充:函數(shù)平移規(guī)律:左加右減、上加下減六、二次函數(shù)的最值如果自變量的取值范圍是全體實數(shù),那么函數(shù)在頂點處取得最大值(或最小值),即當(dāng)時,。如果自變量的取值范圍是,那么,首先要看是否在自變量取值范圍內(nèi),若在此范圍內(nèi),則當(dāng)x=時,;若不在此范圍內(nèi),則需要考慮函數(shù)在范圍內(nèi)的增減性,如果在此范圍內(nèi),y隨x的增大而增大,則當(dāng)時,,當(dāng)時,;如果在此范圍內(nèi),y隨x的增大而減小,則當(dāng)時,,當(dāng)時,。典型例題1.已知函數(shù),則使y=k成立的x值恰好有三個,則k的值為()A.0 B.1 C.2 D.32.如圖為拋物線的圖像,A、B、C為拋物線與坐標軸的交點,且OA=OC=1,則下列關(guān)系中正確的是()A.a(chǎn)+b=-1B.a(chǎn)-b=-1C.b<2a3.二次函數(shù)的圖象如圖所示,則反比例函數(shù)與一次函數(shù)在同一坐標系中的大致圖象是().4.如圖,已知二次函數(shù)的圖象經(jīng)過點(-1,0),(1,-2),當(dāng)隨的增大而增大時,的取值范圍是.((1,-2)-15.在平面直角坐標系中,將拋物線繞著它與y軸的交點旋轉(zhuǎn)180°,所得拋物線的解析式是().A.B.C.D.6.已知二次函數(shù)的圖像如圖,其對稱軸,給出下列結(jié)果①②③④⑤,則正確的結(jié)論是()A①②③④B②④⑤C②③④D①④⑤7.拋物線上部分點的橫坐標,縱坐標的對應(yīng)值如下表:x…-2-1012…y…04664…從上表可知,下列說法中正確的是.(填寫序號)①拋物線與軸的一個交點為(3,0);②函數(shù)的最大值為6;③拋物線的對稱軸是;④在對稱軸左側(cè),隨增大而增大.8.如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(-2,4),過點A作AB⊥y軸,垂足為B,連結(jié)OA.(1)求△OAB的面積;(2)若拋物線經(jīng)過點A.①求c的值;②將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內(nèi)部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).9.已知二次函數(shù)y=eq\f(1,4)x2+eq\f(3,2)x的圖像如圖.(1)求它的對稱軸與x軸交點D的坐標;(2)將該拋物線沿它的對稱軸向上平移,設(shè)平移后的拋物線與x軸、y軸的交點分別為A、B、C三點,若∠ACB=90°,求此時拋物線的解析式;(3)設(shè)(2)中平移后的拋物線的頂點為M,以AB為直徑,D為圓心作⊙D,試判斷直線CM與⊙D的位置關(guān)系,并說明理由.10.如圖,在平面直角坐標系xOy中,AB在x軸上,AB=10,以AB為直徑的⊙O′與y軸正半軸交于點C,連接BC,AC.CD是⊙O′的切線,AD⊥CD于點D,tan∠CAD=,拋物線過A,B,C三點.(1)求證:∠CAD=∠CAB;(2)①求拋物線的解析式;②判定拋物線的頂點E是否在直線CD上,并說明理由;(3)在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(不寫求解過程);若不存在,請說明理由.11.如圖所示,在平面直角坐標系中,四邊形ABCD是直角梯形,BC∥AD,∠BAD=90°,BC與y軸相交于點M,且M是BC的中點,A、B、13.在平面直角坐標系中,如圖1,將n個邊長為1的正方形并排組成矩形OABC,相鄰兩邊OA和OC分別落在x軸和y軸的正半軸上,設(shè)拋物線y=ax2+bx+c(a<0)過矩形頂點B、C.(1)當(dāng)n=1時,如果a=-1,試求b的值;(2)當(dāng)n=2時,如圖2,在矩形OABC上方作一邊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)上市居間合同范本
- 2025年沈陽貨運資格證考試中心
- 農(nóng)資貨物銷售合同范本
- 出售桌球桌子合同范本
- 全手機購銷合同范本
- 勞動解約合同范本
- 劃線施工合同范例
- 《第一單元 參考活動1 唱響團歌》教學(xué)設(shè)計 -2023-2024學(xué)年初中綜合實踐活動蘇少版八年級上冊
- 內(nèi)墻翻新粉刷合同范本
- 3人合伙養(yǎng)殖合同范本
- 2024年地理知識競賽試題200題及答案
- 中國西安旅游行業(yè)市場全景調(diào)研及未來趨勢研判報告
- 中債違約債券估值方法(2020年版)
- 《經(jīng)典常談》課件
- 陶瓷制品產(chǎn)業(yè)鏈優(yōu)化與協(xié)同創(chuàng)新
- 四川省2024年中考數(shù)學(xué)試卷十七套合卷【附答案】
- 北師大版二年級數(shù)學(xué)下冊全冊10套試卷(附答案)
- GB/T 2423.17-2024環(huán)境試驗第2部分:試驗方法試驗Ka:鹽霧
- 數(shù)字出版概論 課件 第六章 數(shù)字內(nèi)容加工、管理技術(shù)
- 糖尿病并發(fā)癥的早期篩查
- 2019年山東省職業(yè)院校技能大賽中職組“沙盤模擬企業(yè)經(jīng)營”賽項規(guī)程
評論
0/150
提交評論