2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷含解析_第1頁
2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷含解析_第2頁
2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷含解析_第3頁
2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷含解析_第4頁
2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年河北省衡水市安平中學(xué)高考數(shù)學(xué)三模試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.()A. B. C.1 D.2.展開項(xiàng)中的常數(shù)項(xiàng)為A.1 B.11 C.-19 D.513.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,若點(diǎn)在角的終邊上,則()A. B. C. D.4.若復(fù)數(shù)(為虛數(shù)單位)的實(shí)部與虛部相等,則的值為()A. B. C. D.5.函數(shù)的部分圖像如圖所示,若,點(diǎn)的坐標(biāo)為,若將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,則的最小值為()A. B. C. D.6.某單位去年的開支分布的折線圖如圖1所示,在這一年中的水、電、交通開支(單位:萬元)如圖2所示,則該單位去年的水費(fèi)開支占總開支的百分比為()A. B. C. D.7.已知的展開式中的常數(shù)項(xiàng)為8,則實(shí)數(shù)()A.2 B.-2 C.-3 D.38.已知定義在上的奇函數(shù)滿足:(其中),且在區(qū)間上是減函數(shù),令,,,則,,的大小關(guān)系(用不等號連接)為()A. B.C. D.9.如圖所示,網(wǎng)格紙上小正方形的邊長為,粗線畫出的是某多面體的三視圖,則該幾何體的各個面中最大面的面積為()A. B. C. D.10.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.11.在復(fù)平面內(nèi),復(fù)數(shù)z=i對應(yīng)的點(diǎn)為Z,將向量繞原點(diǎn)O按逆時針方向旋轉(zhuǎn),所得向量對應(yīng)的復(fù)數(shù)是()A. B. C. D.12.已知三棱錐中,是等邊三角形,,則三棱錐的外接球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,已知,則的最小值是________.14.在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)).(1)求直線和曲線的普通方程;(2)設(shè)為曲線上的動點(diǎn),求點(diǎn)到直線距離的最小值及此時點(diǎn)的坐標(biāo).15.已知二項(xiàng)式的展開式中各項(xiàng)的二項(xiàng)式系數(shù)和為512,其展開式中第四項(xiàng)的系數(shù)__________.16.函數(shù)在的零點(diǎn)個數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四面體中,,平面平面,,且.(1)證明:平面;(2)設(shè)為棱的中點(diǎn),當(dāng)四面體的體積取得最大值時,求二面角的余弦值.18.(12分)已知函數(shù).(1)若不等式有解,求實(shí)數(shù)的取值范圍;(2)函數(shù)的最小值為,若正實(shí)數(shù),,滿足,證明:.19.(12分)已知函數(shù).(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.20.(12分)已知圓O經(jīng)過橢圓C:的兩個焦點(diǎn)以及兩個頂點(diǎn),且點(diǎn)在橢圓C上.求橢圓C的方程;若直線l與圓O相切,與橢圓C交于M、N兩點(diǎn),且,求直線l的傾斜角.21.(12分)已知變換將平面上的點(diǎn),分別變換為點(diǎn),.設(shè)變換對應(yīng)的矩陣為.(1)求矩陣;(2)求矩陣的特征值.22.(10分)已知在中,角,,的對邊分別為,,,的面積為.(1)求證:;(2)若,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

利用復(fù)數(shù)的乘方和除法法則將復(fù)數(shù)化為一般形式,結(jié)合復(fù)數(shù)的模長公式可求得結(jié)果.【詳解】,,因此,.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)模長的計(jì)算,同時也考查了復(fù)數(shù)的乘方和除法法則的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.2、B【解析】

展開式中的每一項(xiàng)是由每個括號中各出一項(xiàng)組成的,所以可分成三種情況.【詳解】展開式中的項(xiàng)為常數(shù)項(xiàng),有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項(xiàng)中的常數(shù)項(xiàng)為,故選B.【點(diǎn)睛】本題考查二項(xiàng)式定理知識的生成過程,考查定理的本質(zhì),即展開式中每一項(xiàng)是由每個括號各出一項(xiàng)相乘組合而成的.3、D【解析】

由題知,又,代入計(jì)算可得.【詳解】由題知,又.故選:D【點(diǎn)睛】本題主要考查了三角函數(shù)的定義,誘導(dǎo)公式,二倍角公式的應(yīng)用求值.4、C【解析】

利用復(fù)數(shù)的除法,以及復(fù)數(shù)的基本概念求解即可.【詳解】,又的實(shí)部與虛部相等,,解得.故選:C【點(diǎn)睛】本題主要考查復(fù)數(shù)的除法運(yùn)算,復(fù)數(shù)的概念運(yùn)用.5、B【解析】

根據(jù)圖象以及題中所給的條件,求出和,即可求得的解析式,再通過平移變換函數(shù)圖象關(guān)于軸對稱,求得的最小值.【詳解】由于,函數(shù)最高點(diǎn)與最低點(diǎn)的高度差為,所以函數(shù)的半個周期,所以,又,,則有,可得,所以,將函數(shù)向右平移個單位后函數(shù)圖像關(guān)于軸對稱,即平移后為偶函數(shù),所以的最小值為1,故選:B.【點(diǎn)睛】該題主要考查三角函數(shù)的圖象和性質(zhì),根據(jù)圖象求出函數(shù)的解析式是解決該題的關(guān)鍵,要求熟練掌握函數(shù)圖象之間的變換關(guān)系,屬于簡單題目.6、A【解析】

由折線圖找出水、電、交通開支占總開支的比例,再計(jì)算出水費(fèi)開支占水、電、交通開支的比例,相乘即可求出水費(fèi)開支占總開支的百分比.【詳解】水費(fèi)開支占總開支的百分比為.故選:A【點(diǎn)睛】本題考查折線圖與柱形圖,屬于基礎(chǔ)題.7、A【解析】

先求的展開式,再分類分析中用哪一項(xiàng)與相乘,將所有結(jié)果為常數(shù)的相加,即為展開式的常數(shù)項(xiàng),從而求出的值.【詳解】展開式的通項(xiàng)為,當(dāng)取2時,常數(shù)項(xiàng)為,當(dāng)取時,常數(shù)項(xiàng)為由題知,則.故選:A.【點(diǎn)睛】本題考查了兩個二項(xiàng)式乘積的展開式中的系數(shù)問題,其中對所取的項(xiàng)要進(jìn)行分類討論,屬于基礎(chǔ)題.8、A【解析】因?yàn)?,所以,即周期為4,因?yàn)闉槠婧瘮?shù),所以可作一個周期[-2e,2e]示意圖,如圖在(0,1)單調(diào)遞增,因?yàn)?,因此,選A.點(diǎn)睛:函數(shù)對稱性代數(shù)表示(1)函數(shù)為奇函數(shù),函數(shù)為偶函數(shù)(定義域關(guān)于原點(diǎn)對稱);(2)函數(shù)關(guān)于點(diǎn)對稱,函數(shù)關(guān)于直線對稱,(3)函數(shù)周期為T,則9、B【解析】

根據(jù)三視圖可以得到原幾何體為三棱錐,且是有三條棱互相垂直的三棱錐,根據(jù)幾何體的各面面積可得最大面的面積.【詳解】解:分析題意可知,如下圖所示,該幾何體為一個正方體中的三棱錐,最大面的表面邊長為的等邊三角形,故其面積為,故選B.【點(diǎn)睛】本題考查了幾何體的三視圖問題,解題的關(guān)鍵是要能由三視圖解析出原幾何體,從而解決問題.10、C【解析】

設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.【點(diǎn)睛】本題考查利用拋物線定義求焦半徑的問題,考查學(xué)生等價轉(zhuǎn)化的能力,是一道容易題.11、A【解析】

由復(fù)數(shù)z求得點(diǎn)Z的坐標(biāo),得到向量的坐標(biāo),逆時針旋轉(zhuǎn),得到向量的坐標(biāo),則對應(yīng)的復(fù)數(shù)可求.【詳解】解:∵復(fù)數(shù)z=i(i為虛數(shù)單位)在復(fù)平面中對應(yīng)點(diǎn)Z(0,1),

∴=(0,1),將繞原點(diǎn)O逆時針旋轉(zhuǎn)得到,

設(shè)=(a,b),,則,即,

又,解得:,∴,對應(yīng)復(fù)數(shù)為.故選:A.【點(diǎn)睛】本題考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.12、D【解析】

根據(jù)底面為等邊三角形,取中點(diǎn),可證明平面,從而,即可證明三棱錐為正三棱錐.取底面等邊的重心為,可求得到平面的距離,畫出幾何關(guān)系,設(shè)球心為,即可由球的性質(zhì)和勾股定理求得球的半徑,進(jìn)而得球的表面積.【詳解】設(shè)為中點(diǎn),是等邊三角形,所以,又因?yàn)椋?,所以平面,則,由三線合一性質(zhì)可知所以三棱錐為正三棱錐,設(shè)底面等邊的重心為,可得,,所以三棱錐的外接球球心在面下方,設(shè)為,如下圖所示:由球的性質(zhì)可知,平面,且在同一直線上,設(shè)球的半徑為,在中,,即,解得,所以三棱錐的外接球表面積為,故選:D.【點(diǎn)睛】本題考查了三棱錐的結(jié)構(gòu)特征和相關(guān)計(jì)算,正三棱錐的外接球半徑求法,球的表面積求法,對空間想象能力要求較高,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】分析:可先用向量的數(shù)量積公式將原式變形為:,然后再結(jié)合余弦定理整理為,再由cosC的余弦定理得到a,b的關(guān)系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當(dāng)a=b時取到等號,故cosC的最小值為.點(diǎn)睛:考查向量的數(shù)量積、余弦定理、基本不等式的綜合運(yùn)用,能正確轉(zhuǎn)化是解題關(guān)鍵.屬于中檔題.14、(1),;(2),.【解析】

(1)利用代入消參的方法即可將兩個參數(shù)方程轉(zhuǎn)化為普通方程;(2)利用參數(shù)方程,結(jié)合點(diǎn)到直線的距離公式,將問題轉(zhuǎn)化為求解二次函數(shù)最值的問題,即可求得.【詳解】(1)直線的普通方程為.在曲線的參數(shù)方程中,,所以曲線的普通方程為.(2)設(shè)點(diǎn).點(diǎn)到直線的距離.當(dāng)時,,所以點(diǎn)到直線的距離的最小值為.此時點(diǎn)的坐標(biāo)為.【點(diǎn)睛】本題考查將參數(shù)方程轉(zhuǎn)化為普通方程,以及利用參數(shù)方程求距離的最值問題,屬中檔題.15、【解析】

先令可得其展開式各項(xiàng)系數(shù)的和,又由題意得,解得,進(jìn)而可得其展開式的通項(xiàng),即可得答案.【詳解】令,則有,解得,則二項(xiàng)式的展開式的通項(xiàng)為,令,則其展開式中的第4項(xiàng)的系數(shù)為,故答案為:【點(diǎn)睛】此題考查二項(xiàng)式定理的應(yīng)用,解題時需要區(qū)分展開式中各項(xiàng)系數(shù)的和與各二項(xiàng)式系數(shù)和,屬于基礎(chǔ)題.16、【解析】

求出的范圍,再由函數(shù)值為零,得到的取值可得零點(diǎn)個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點(diǎn).【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點(diǎn),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)根據(jù)面面垂直的性質(zhì)得到平面,從而得到,利用勾股定理得到,利用線面垂直的判定定理證得平面;(2)設(shè),利用椎體的體積公式求得,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,從而求得時,四面體的體積取得最大值,之后利用空間向量求得二面角的余弦值.【詳解】(1)證明:因?yàn)椋矫嫫矫?,平面平面,平面,所以平面,因?yàn)槠矫?,所?因?yàn)椋?,所以,因?yàn)?,所以平?(2)解:設(shè),則,四面體的體積.,當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減.故當(dāng)時,四面體的體積取得最大值.以為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,則,即,令,得,同理可得平面的一個法向量為,則.由圖可知,二面角為銳角,故二面角的余弦值為.【點(diǎn)睛】該題考查的是有關(guān)立體幾何的問題,涉及到的知識點(diǎn)有面面垂直的性質(zhì),線面垂直的判定,椎體的體積,二面角的求法,在解題的過程中,注意巧用導(dǎo)數(shù)求解體積的最大值.18、(1)(2)見解析【解析】

(1)分離得到,求的最小值即可求得的取值范圍;(2)先求出,得到,利用乘變化即可證明不等式.【詳解】解:(1)設(shè),∴在上單調(diào)遞減,在上單調(diào)遞增.故.∵有解,∴.即的取值范圍為.(2),當(dāng)且僅當(dāng)時等號成立.∴,即.∵.當(dāng)且僅當(dāng),,時等號成立.∴,即成立.【點(diǎn)睛】此題考查不等式的證明,注意定值乘變化的靈活應(yīng)用,屬于較易題目.19、(1);(2).【解析】

(1)分類討論,,,即可得出結(jié)果;(2)先由題意,將問題轉(zhuǎn)化為即可,再求出,的最小值,解不等式即可得出結(jié)果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當(dāng)時,,所以;因?yàn)椋?,解得,結(jié)合,所以的取值范圍是.【點(diǎn)睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數(shù)的問題,熟記分類討論的思想、以及絕對值不等式的性質(zhì)即可,屬于??碱}型.20、(1);(2)或【解析】

(1)先由題意得出,可得出與的等量關(guān)系,然后將點(diǎn)的坐標(biāo)代入橢圓的方程,可求出與的值,從而得出橢圓的方程;(2)對直線的斜率是否存在進(jìn)行分類討論,當(dāng)直線的斜率不存在時,可求出,然后進(jìn)行檢驗(yàn);當(dāng)直線的斜率存在時,可設(shè)直線的方程為,設(shè)點(diǎn),先由直線與圓相切得出與之間的關(guān)系,再將直線的方程與橢圓的方程聯(lián)立,由韋達(dá)定理,利用弦長公式并結(jié)合條件得出的值,從而求出直線的傾斜角.【詳解】(1)由題可知圓只能經(jīng)過橢圓的上下頂點(diǎn),所以橢圓焦距等于短軸長,可得,又點(diǎn)在橢圓上,所以,解得,即橢圓的方程為.(2)圓的方程為,當(dāng)直線不存在斜率時,解得,不符合題意;當(dāng)直線存在斜率時,設(shè)其方程為,因?yàn)橹本€與圓相切,所以,即.將直線與橢圓的方程聯(lián)立,得:,判別式,即,設(shè),則,所以,解得,所以直線的傾斜角為或.【點(diǎn)睛】求橢圓標(biāo)準(zhǔn)方程的方法一般為待定系數(shù)法,根據(jù)條件確定關(guān)于的方程組,解出,從而寫出橢圓的標(biāo)準(zhǔn)方程.解決直線與橢圓的位置關(guān)系的相關(guān)問題,其常規(guī)思路是先把直線方程與橢圓方程聯(lián)立,消元、化簡,然后應(yīng)用根與系數(shù)的關(guān)系建立方程,解決相關(guān)問題.涉及弦中點(diǎn)的問題常常用“點(diǎn)差法”解決,往往會更簡單.21、(1)(2)1或6【解析】

(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論