一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第1頁
一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第2頁
一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

一種求解非線性約束優(yōu)化問題的無罰函數(shù)無濾子的方法Title:APenalty-freeandFilter-freeApproachforSolvingNonlinearConstrainedOptimizationProblemsAbstract:Nonlinearconstrainedoptimizationproblemsariseinvariousfields,suchasengineering,economics,andmachinelearning.Theseproblemsofteninvolvefindingtheoptimalvaluesofasetofdecisionvariableswhilesatisfyingasetofconstraints.Inthispaper,weproposeapenalty-freeandfilter-freeapproachforsolvingsuchproblems.Theproposedmethodavoidstheuseofpenaltyfunctionsandfilters,whichcanintroduceadditionalcomplexityandcomputationalcost.Instead,itleveragesthebenefitsofadirectsearchmethodcombinedwithanadaptivesamplingstrategytoefficientlyexplorethesolutionspace.Theeffectivenessoftheproposedapproachisdemonstratedthroughnumericalexperimentsonasetofbenchmarkproblems.1.Introduction:Nonlinearconstrainedoptimizationproblemscanbemathematicallyformulatedasminimizinganobjectivefunctionsubjecttoasetofconstraints.Traditionalmethodsforsolvingtheseproblemsofteninvolvetheuseofpenaltyfunctionsorfilterstotransformtheconstrainedproblemintoanunconstrainedone.However,theseapproachescanleadtodifficultiesinfindingtheglobalminimum,introduceadditionalcomplexity,andresultinahighercomputationalburden.Thispaperproposesapenalty-freeandfilter-freeapproachthatovercomestheselimitationsandprovidesanefficientsolutionstrategy.2.ProblemFormulation:Thenonlinearconstrainedoptimizationproblemisrepresentedasfollows:Minimize:f(x)Subjectto:g(x)≤0h(x)=0wheref(x)istheobjectivefunction,g(x)representsinequalityconstraints,h(x)depictsequalityconstraints,andxisthedecisionvariablevector.3.TheProposedMethod:Theproposedapproachisbasedonadirectsearchmethodthatiterativelyexploresthesolutionspacetofindtheoptimalvaluesofthedecisionvariables.Unliketraditionalmethods,nopenaltyfunctionsorfiltersareusedtohandletheconstraints.Instead,theapproachutilizesanadaptivesamplingstrategy,whichadaptivelyadjuststhesamplingpointsbasedontheevaluationresultstoguidethesearchtowardspromisingregionsofthesolutionspace.Thisadaptivesamplingstrategyallowsforamoreefficientexplorationofthefeasibleregionwhilesatisfyingtheconstraints.4.AdaptiveSamplingStrategy:Theadaptivesamplingstrategyconsistsoftwomaincomponents:explorationandexploitation.Intheexplorationphase,thealgorithminitiallysamplespointsrandomlyfromthefeasibleregionandevaluatestheobjectivefunctionandconstraintsatthesepoints.Theseevaluationsprovideinformationaboutthelandscapeandguidethesearchtowardspromisingregions.Intheexploitationphase,thealgorithmfocusesonrefiningthesolutionbysamplingnearthepromisingregionsbasedontheevaluationresults.Thisiterativeprocesscontinuesuntilaterminationcriterionismet.5.Algorithm:Thealgorithmforthepenalty-freeandfilter-freeapproachisoutlinedasfollows:1.Initializethedecisionvariablevectorx.2.Generateasetofinitialsamplingpointsrandomlywithinthefeasibleregion.3.Evaluatetheobjectivefunctionandconstraintsatthesepoints.4.Identifythebestpointbasedontheobjectivefunctionvalueandconstraintviolation.5.Adaptivelyadjustthesamplingpointsbasedontheevaluationresults.6.Repeatsteps3-5untilaterminationcriterionismet(e.g.,maximumnumberofiterations,convergencecheck).7.Outputthebestsolutionfound.6.ExperimentalResults:Toassesstheeffectivenessoftheproposedapproach,numericalexperimentsareconductedonasetofbenchmarkproblemsfromdifferentdomains.Theresultsarecomparedwithtraditionalpenalty-basedapproachesandfilter-basedapproaches.Theexperimentalresultsdemonstratethatthepenalty-freeandfilter-freeapproachoutperformsthetraditionalmethodsintermsofsolutionaccuracy,convergencespeed,andcomputationalefficiency.Italsoshowsrobustnesstodifferentproblemtypesanddimensions.7.Conclusion:Inthispaper,apenalty-freeandfilter-freeapproachforsolvingnonlinearconstrainedoptimizationproblemshasbeenproposed.Byleveraginganadaptivesamplingstrategywithinadirectsearchframework,theapproachavoidsthecomplexityandcomputationalburdenassociatedwithpenaltyfunctionsandfilters.Numerica

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論