二項式定理高考試題及其答案總_第1頁
二項式定理高考試題及其答案總_第2頁
二項式定理高考試題及其答案總_第3頁
二項式定理高考試題及其答案總_第4頁
二項式定理高考試題及其答案總_第5頁
已閱讀5頁,還剩36頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

二項式定理復(fù)習(xí)

一、學(xué)習(xí)目標(biāo):

1、能用計數(shù)原理證明。

2、會用二項式定理解決系數(shù)和、常數(shù)項、最大值等與二項展開式有關(guān)的簡單問題。

二、命題規(guī)律與命題趨勢:

高考對二項式定理的考查,主要涉及利用通項公式求展開式的特定項,利用二項展開式性質(zhì)求

系數(shù)或與系數(shù)有關(guān)的問題,利用二項式定理進行近似計算。題型以選擇、填空為主,少有綜合

性的大題。高考重點考查通項公式和項的系數(shù)的概念,同時考查了運算能力。

三、常考點:

1、二項式定理:(a+b)n=C\an+C'?an-'b'+-??+C;an-rbr+???+C'b"(?e/Vs)

2、幾個基本概念

(1)二項展開式:右邊的多項式叫做(a+與"的二項展開式

(2)項數(shù):二項展開式中共有〃+1項

(3)二項式系數(shù):C:(r=0,1,2,)叫做二項展開式中第r+1項的二項式系數(shù)

(4)通項:展開式的第「+1項,即7川=。,>"一0(7=0,1,…,〃)

3、展開式的特點

(1)系數(shù)都是組合數(shù),依次為c:,c:干二,…,c:

(2)指數(shù)的特點①a的指數(shù)由n—?0(降新)。

②b的指數(shù)由0—?n(升第)。

③a和b的指數(shù)和為n。

(3)展開式是一個恒等式,a,b可取任意的復(fù)數(shù),n為任意的自然數(shù)。

4、二項式系數(shù)的性質(zhì):

(1)對稱性:

在二項展開式中,與首末兩端等距離的任意兩項的二項式系數(shù)相等.即

(2)增減性與最值""

二項式系數(shù)先增后減且在中間取得最大值

n

當(dāng)〃是偶數(shù)時,中間一項取得最大值

w-lM+I

當(dāng)〃是奇數(shù)時,中間兩項相等且同時取得最大值

(3)二項式系數(shù)的和:+。2+…+c*+?..+C"=2"

奇數(shù)項的二項式系數(shù)的和尊于屬姓項御二項式索數(shù)和.即“.CO+C2+...=C1+c3+...=2n-l

基本題型n11nn

(一)通項公式的應(yīng)用

1、(2X+3"的展開式中第三項的二項式系數(shù)為;第三項的系數(shù)為;

X

常數(shù)項為_______;含X4的項為.

2、已知在(x--的展開式中,第五項為常數(shù)項

(1)求“;(2)求展開式中的所有有理項。

3、(1+2%2)(1-%)4的展開式中》2的系數(shù)為。

注:1、方是第r+1項而不是第/?項

2、二項式系數(shù)與項的系數(shù)是不同的,如(a+陵)"(。力為常數(shù))的展開式中第,+1項的

二項式系數(shù)為,而第r+1項的系數(shù)為

(二)二項式系數(shù)的最值

1、(4+2x)8的展開式中二項式系數(shù)最大的是第一項;

2

(-+2x)9的展開式中二項式系數(shù)最大的是第一項

2

2、巳知二項式己+2幻",若展開式中第五項、第六項、第七項的二項式系數(shù)成等差數(shù)列,求

2

展開式中二項式系數(shù)最大的項的系數(shù)。

(三)展開式中各項系數(shù)和問題

已知(1-2x)7=4+。]彳+。2/H---\-a-jX,求

(1)4]++43++…+%

(2)%+%+。5+%

(3)%+%

43+

開素數(shù)和問題的一個重要手段。

結(jié)

1、(1)二項展開式的通項:第尸+1項,即Tf(r=O,l,…,九)

'對稱性

(2)二項式系數(shù)的三個性質(zhì)〈增減性和最值

二項式系數(shù)和

2、數(shù)學(xué)思想:函數(shù)思想(單調(diào)性、最值)

二項式定理歷年高考試題薈萃(-)

一、選擇題(本大題共58題)

1、二項式解?祖尸的展開式中系數(shù)為有理數(shù)的項共有.....()

A.6項B.7項C.8項D.9項

1

2,對于二項式([+f)"(/JGN),四位同學(xué)作出了四種判斷:…()

①存在展開式中有常數(shù)項;

②對任意〃GN,展開式中沒有常數(shù)項;

③對任意〃GN,展開式中沒有X的一次項;

④存在〃eN,展開式中有x的一次項.

上述判斷中正確的是

(A)①與③(B)②與③(C)②與④(D)④與①

3、在(T+V)6的展開式中,/的系數(shù)和常數(shù)項依次是........()

(A)20,20(B)15,20(C)20,15(D)15,15

1

4、(2/一去)7的展開式中常數(shù)項是...........................................

()

A.14B.-

14C.42D.-42

a

5,已知(x-F)8展開式中常數(shù)項為1120,其中實數(shù)a是常數(shù),則展開式中各項系數(shù)的和

是................................................()

(A)28(B)38(C)l或

38(D)1或28

2

6.若(石+赤)"展開式中存在常數(shù)項,則A的值可以是........()

A.8B.9C.10

D.12

7.(2戶點尸的展開式中,的系數(shù)是.............................()

A.6B.12C.24

D.48

X

8、(?—戛)6的展開式中的常數(shù)項為...........................()

A.15B.-

15C.20D.-20

9、(2三一石)’的展開式中常數(shù)項是

()

A.14B.一

14C.42D.-42

10、若(,G+需)〃展開式中存在常數(shù)項,則〃的值可以是.............()

A.8B.9C.10

D.12

11、若展開式中含7項的系數(shù)與含7項的系數(shù)之比為一5,則n等

A.4B.6C.8

D.10

12、步4■心”的展開式中,含x的正整數(shù)次第的項共有()

A.4項B.3項C.2項D.1項

13.(x-忘y>。的展開式中x歲項的系數(shù)是

(A)840(B)-840(C)210(D)

-210

14.(4+6)、的展開式中,含x的正整數(shù)次塞的項共有()

A.4項B.3項C.2項D.1項

15、若0+2通,展開式中含尹的項的系數(shù)等于含*的項的系數(shù)的8倍,則〃等

于()

A.5B.7C.9

D.11

16、3.若('-HI*-。的展開式中,的系數(shù)是()

A-14BUC-26D28

17、在(*一娛*+9'的展開式中,的系數(shù)

是()

A.-14B.14C.一

28D.28

則展開式中了的系數(shù)是(

18、如果的展開式中各項系數(shù)之和為128,)

(A)7(B)-7(C)21(D)

-21

則展開式中了的系數(shù)是(

19、如果的展開式中各項系數(shù)之和為128,)

(A)7(B)-7(C)21(D)-51

20、設(shè)k=l,2,3,4,5,則(界2)s的展開式中xk的系數(shù)丕亙能是

(A)10(B)40(C)50(D)80

21、7.在(“《)”的二項展開式中,若常數(shù)項為6。,則n等于

A.3B.6C.9D.12

,--L3

的展開式中第三項與第五項的系數(shù)之比為正,則展開式中常數(shù)項是

22、已知()

(A)-l(B)l(C)-45(D)45

23、I包)的展開式中,x的募的指數(shù)是整數(shù)的項共有

A.3項B.4項C.5

項D.6項

24、在二項式(X+1F的展開式中,含犬的項的系數(shù)是

(A)15(B)20(C)30

D)40

25、(若多項式—+/=,+?iQ+D+…+??U+D",則,=

(A)9(B)10(C)

-9(D)-10

26、(*<5+4+4+4的值為()

A.61B.62C.63

D.64

27、在(x-6)20M的二項展開式中,含x的奇次幕的項之和為S,當(dāng)*=企時,S等于

A.23008B.-23008CD.-23009

28.在(石F〃的展開式中,x的幕的指數(shù)是整數(shù)的項共有

A.3項B.4項C.5

項D.6項

(4-:產(chǎn)

29、業(yè)的展開式中含x的正整數(shù)指數(shù)幕的項數(shù)是

(A)0(B)2(C)4(D)6

1

30、在(x-記)I"的展開公式中,x

的系數(shù)為

(A)-120(8)120(0-15(D)

15

31、(2x-3)$的展開式中X2項的系數(shù)為

(A)-2160(B)-1080(C)

1080(D)2160

32.若(ax-1)5的展開式中Y的系數(shù)是80,則實數(shù)a的值是

A.-2B.2C.

D.2

33、體<-小打)的展開式中各項系數(shù)之和為64,則展開式的常數(shù)項為

(A)-540(B)-162(C)162(D)540

2

34、已知I市)的展開式中第三項與第五項的系數(shù)之比為-14,其中則展開式

中常數(shù)項是

(A)-45i(B)45i(C)-45

(D)45

35.若對于任意的實數(shù)x,有/=&+a(尸2)+&(尸2)2+a(方2)3,則&的值為

A.3B.6C.9

D.1

36、在(1+弓”(〃6獷)的二項展開式中,若只有x御系數(shù)最大,貝阮=

A.8B.9C.

10D.11

37、1的展開式中,常數(shù)項為15,則k

A.3B.4C.5

D.6

j_

38、若(x+7)n展開式的二項式系數(shù)之和為64,則展開式的常數(shù)項為

A.10B.20C.30

D.120

3

39、.已知(五+而"展開式中,各項系數(shù)的和與其各項二項式系數(shù)的和之比為64,則〃等于

A.4B.5C.6

D.7

40設(shè)(x2+l)(2x+l)9=ao+ai(x+2)+a2(x+2)?+…+au(x+2)”,則ao+ai+a2+…+a”的

值為

A.-2B.一

1C.1D.2

(石一I)"

41、0/展開式中的常數(shù)項是

(A)-36(B)36(C)-84(D)84

2丫

42、如果I的展開式中含有非零常數(shù)項,則正整數(shù)n的最小值為

A.3B.5C.6

D.10

43、如果一Fj的展開式中含有非零常數(shù)項,則正整數(shù)〃的最小值為

A.10B.6C.5

D.3

44、((2戶展開式中/的系數(shù)為

(A)15(B)60(C)120

(D)240

45、(X-或)I?展開式中的常數(shù)項為

(A)-1320(B)1320(C)-220(D)220

46、在Q-DU-2XA-7XL伙的展開式中,含的項的系數(shù)是

(A)-15(B)85(C)-120(D)274

47、展開式中的常數(shù)項為

B.Go'

A.1C.

D.

48、在(x-1)(x-2)(x-3)(x-4)(x-5)的展開式中,含x"的項的系數(shù)是

(A)-15(B)85(C)

-120(D)274

49、設(shè)Q+津,則?■中奇數(shù)的個數(shù)為()

A.2B.3C.4

D.5

(1+?(1+力,2

50、X的展開式中含一的項的系數(shù)為

(A)4(B)6(C)10(D)12

51、**展開式中的常數(shù)項為

A.1B.46C.4245D.4246

52、0的展開式中需的系數(shù)是()

A.-4B.-3C.3D

.4

(1+3(1+幻’2

53、X的展開式中含/的項的系數(shù)為

(A)4(B)6(C)10(D)12

54、I2J的展開式中,的系數(shù)為()

5

A.10B.5C.2

D.1

55、■的展開式中x的系數(shù)是()

A.-AB.-ZC.3D

.4

56、設(shè)Q+xf則.■中奇數(shù)的個數(shù)為()

A.2B.3C.4

D.5

1

57、若(x+云)”的展開式中前三項的系數(shù)成等差數(shù)列,則展開式中x4項的系數(shù)為()

A.6B.7C.8

D.9

31

(2X--17)°

58、2x的展開式中常數(shù)項是

1051

A.210B.2C.W

D.-105

二項式定理歷年高考試題薈萃(二)

一、填空題(本大題共55題)

1、在二項式(X—I)u的展開式中,系數(shù)最小的項的系數(shù)為.(結(jié)果用

數(shù)值表示)

(?-&。

展開式中的常數(shù)項是

3、在二項式(x—Du的展開式中,系數(shù)最小的項的系數(shù)為.

(結(jié)果用數(shù)值表示)

1

4、在代數(shù)式(44—2x—5)(1+^)5的展開式中,常數(shù)項為.

1

5、在(X—苫)6的二項展開式中,常數(shù)項

為.

6、.(了戶D1°的二項展開式中y的系數(shù)為.

7、若在("7)〃的展開式中,第4項是常數(shù)項,則k.

8、(Al)(X—2)7的展開式中V項的系數(shù)是.

1

12、(/一二)9展開式中/的系數(shù)是.

04

17.若(1—2x)2°°Ja+a田…+◎004fo(x£R),則(a+4)+(4+&)+(a+為)

+…+(a+&oo4)-.(用數(shù)字作答)

18、已知a為實數(shù),(戶a)展開式中,的系數(shù)是一15,則手.

19、若在(1+axT展開式中,的系數(shù)為-80,則f.

3人

20、4”的展開式中各項系數(shù)的和是128,則展開式中f的系數(shù)

是.(以數(shù)字作答)

21.(步+】)9的展開式中的常數(shù)項為(用數(shù)字作答).

22、若在二項式(戶1了的展開式中任取一項,則該項的系數(shù)為奇數(shù)的概率

是.(結(jié)果用分數(shù)表示)

1

23、(X—忑)8展開式中/的系數(shù)為.

24、若在(1+弱5展開式中,的系數(shù)為-80,則爐.

1

25、若(,+£萬)”的展開式中的常數(shù)項為84,則爐.

26、若(x+:—2)〃的展開式中常數(shù)項為-20,則自然數(shù)n=.

27、(*一忑)8展開式中/的系數(shù)為.

28、如圖,在由二項式系數(shù)所構(gòu)成的楊輝三角形中,第行中從左至右第14

與第15個數(shù)的比為2:3.

I

Miffii

BtfrI2I

BSfr1331

BtfrL4?-41

Bsfr1S101051

2

29、.在(1+X)+(1+X)+--+(1+X)6的展開式中,/項的系數(shù)是.

(用數(shù)字作答)

(Vx--i)"

30、二項式4的展開式中常數(shù)項為(用數(shù)字作答).

31、.若cx+下OwN?且局N3),且。力?生2,貝?。?/p>

n-.

32、(內(nèi)/展開式中的常數(shù)項是(用數(shù)字作答).

”一'/的展開式中,常數(shù)項為

33、0(用數(shù)字作答)

2

34、在(1+x)+(1+x)+........+(1+x)6的展開式中,X?項的系數(shù)是

(用數(shù)字作答)

35、事的展開式中,常數(shù)項為。(用數(shù)字作答)

36、(設(shè)#w町則Gi+q6'T=

37、一2*:)4的展開式中常數(shù)項是,

(?-3)?+(x+i*

38、KK的展開式中整理后的常數(shù)項等于.

39、已知。81@十y的展開式中/的系數(shù)與’?的展開式中J的系數(shù)相等,則

cot9=___________

40、'2X的展開式中整理后的常數(shù)項為.

41、'X'的展開式中的常數(shù)項是(用數(shù)字作答)

42、"-IP的展開式中的常數(shù)項是(用數(shù)字作答)

43、在?的展開式中,/的系數(shù)是15,則實數(shù)夕=o

44、X展開式中的常數(shù)項是(用數(shù)

字作答)。

45、展開式中r,的系數(shù)是(用數(shù)字作答)。

1

46、(2X+W),的二項展開式中X的系數(shù)是(用數(shù)字作答).

2

47、.在("一;)"的展開式中,必的系數(shù)為。

48、若(ax-l)5的展開式中(的系數(shù)是-80,則實數(shù)a的值是.

49、'/展開式中/的系數(shù)是(用數(shù)字作答)。

1

50、(X+袤)7的二項展開式中X的系數(shù)是(用數(shù)字作答).

51、在、/的展開式中常數(shù)項是。(用數(shù)字

作答)

I

52.(2*—袤”展開式中的常數(shù)項為(用數(shù)字作答).

2

53、在(X-:)'的展開式中,必的系數(shù)是.(用數(shù)字作答)

54、(1-2X)”展開式中白的系數(shù)為(用數(shù)字作答)

55、設(shè)常數(shù)Q>0,\St)展開式中/的系數(shù)為2,則4=o

二項式定理歷年高考試題薈萃(二)答案

一、填空題(本大題共55題,共計225分)

21£

1、一4622、2103、—4624、155、156.2*7、188、100812、-217、200418、—2⑶—220、35

21.8422、(II.23、824、1225、15?926.3272828、34

29、35解析:依題意可知含*項的系數(shù)為C〃C:+C;+…+cL

化簡上式=C;+C;+C*+-+C?=C?+C?+—+C#=C7=3x2x1=35.

-UI,

10rr

3。、210解析:乙產(chǎn)CS(Vr)-*(-Vx)=C?(-1)7丁F

10-rr

■:3-2=0,.?.尸4..?.B=C3(-1)4=210.

1_,33

31、11.32、240解析:通項加=C;(2石)f(一;)T(T)'''令

3

3—5尸0得尸2.,展開式中的常數(shù)項為乙=21?(-1)2-C?=240.

33、70解析:(-x)j(-1)d?/三(-1)dft

.,.8-2尸0,尸4..,.竊(-1)d=70.

34、35解析:依題意可知含f項的系數(shù)為c?+c?+c"…+C?.

7?6x;

化簡上式=d+鎮(zhèn)+C4+…+屋=CI+C*+-+C?=C?=3x2x1=35.

_1_r

5

35、672解析:^=cS(2x)9r(一/)三(-1)d2"算’?*三,

A9-r-2=0,,尸6....△=(-1)6cg?25672.

1

36、?6(7n—1).

解析:Vci+C16+Cn62+C?63+-+CJQn=(1+6)三7",

in2x_T_-_1_

2

.?.CM+C.6+C>6+-+CI161=6.

37、-160解析:設(shè)展開式第尸1項為常數(shù)項,則

11

&=C;(必)(-2*與)r=C??(-2)

由3一尸0,,尸3.,北=&(-2)V=-160.

2

38、38解析:設(shè)(,一1)4展開式中第戶1項為常數(shù)項,其中7m=C:-(-

2

T)'=(-2),?C;令12—4尸0,尸3.,7\尸北=一32.

易見,(廣;)s展開式中第5項為常數(shù)項,B=C:=70.

2£

故(,一二)4+(戶;)-的展開式中整理后的常數(shù)項為-32+70=38.

建、,

39、.2解析:(XCOS夕+1)5的展開式含"的項為J(JTCOS。)2=10COS2

55

(A+4)4的展開式中含f的項為c!f(4)=5*.?.?兩項系數(shù)相等,.FOcos?"5.

!亙

故cos29=2.工cos夕=±2.

竺亙X11京科2旭印'3+中

40.2解析:(了+;+#)5=(2k)5=~~=(2>’.

對于二項式(戶或)|°中,7rH=C「?/-'?(£)'.要得到常數(shù)項需10一尸5,則

尸5....常數(shù)項為一?一=—.

41,-20解析:設(shè)常數(shù)項為&(-X)(-1)d?/■廣,,

.\6-r-z=0,得尸3..?.常數(shù)項為(-1)3C?=-20.

1r

4215解析:設(shè)常數(shù)項為C;?/'(一無)'=(-1)吸

.\6-r-2=0,得尸4..?.常數(shù)項為(-1)4C*=15.

1£

l0-r3

43、-2解析:7^1=cJnx(—a)=由題設(shè)r=3,.*.ci(—a)=15,.\a=-i.

1_3之3

44、.240解析:通項普尸C;(2石)6-,?(一;)=26>(-1)八最"」令3_亍

尸0得尸2....展開式中的常數(shù)項為7;=26-2?(-1)2-C*=240.

45、10解析:設(shè)展開式中含x4的項為第T「“項

_2

25rrrr1<h3r

則T*C;(x)-?(=C5?(-1)?x

,,244

V10-3r=4..r=2..T3=Cs?(-1)?x=10x,系數(shù)為10.

,£

r7r7r!

46、280解析:T^=G?2',x''令7-r-2=l得r=4,代回得系數(shù)C:?23=280

2

rnrrrr

47、-1320解析:Tr+1=Cn-x-?(-^)=(-2)Cn-x?r

33

令H-2r=5解出r=3;.x5的系數(shù)為(-2)Cn=-1320

48、-2解析:(ax-1)s展開式中好的系數(shù)是-80,則T.=C5r(ax)6r(-1)r

當(dāng)r=2時,有Cj£=-80:.a=-2

1

r

49、10設(shè)展開式中含X"的項為第■項則加=63產(chǎn)?("?)

rr10-3r,,244

=C5?(-1)?xV10-3r=4..r=2..T3=C5?(-1)?x=10x

系數(shù)為4.

r

50、35解析:Tr+產(chǎn)Cx7TA令7-r-Q=1解得r=4代回。得所求系數(shù)為C\=35

r

5人45.解析:設(shè)電項為常數(shù)項.?.T*C,(x4)吁?(;)r=C'x的山?x-

.,.40-4r-r=0Ar=8

C

52、60解析:Tn+i=?26mx(-1)R.JC\n使Qn=Q

則n=4.,T5V22(T)4=60.

2

7rrr7-2r

53、84解析:Trtl=c?x-?(-^)=(-2)?C;?x令7-2r=3:.r=2

代回系數(shù)(-2)=?C;=(-2)2?C:=84

54、一960解析:根據(jù)二項式展開定理,(的為*

=c4r8-2r8-2r4r

55、5解析:Trtl^a-X?由X?£手=不得r=2由GT?a-=2,知a=5

二項式定理歷年高考試題薈萃(Z1)

一、填空題(本大題共55題)

I、在二項式(X—1)”的展開式中,系數(shù)最小的項的系數(shù)為.(結(jié)果用

數(shù)值表示)

(也-手嚴(yán)

2、也展開式中的常數(shù)項是_________.

3、在二項式(X-1)”的展開式中,系數(shù)最小的項的系數(shù)為.

(結(jié)果用數(shù)值表示)

1

4、在代數(shù)式(44-2X—5)(1+尹”的展開式中,常數(shù)項為.

1

5、在(X—/)6的二項展開式中,常數(shù)項

為.

1

6、.(亍戶1尸°的二項展開式中,的系數(shù)為.

7、若在(*7)"的展開式中,第4項是常數(shù)項,則方

8、(y+i)a—2)7的展開式中,項的系數(shù)是.

1

12、(/一瓦)9展開式中V的系數(shù)是.

17.若(1—2%)的=2+為戶2/+…+及()04/>4(xGR),則(Sb+ai)+(為+戊)+(&+&)

+…+(a+麗4)=.(用數(shù)字作答)

18、已知a為實數(shù),(戶a)1°展開式中,的系數(shù)是一15,則乎.

19、若在(1+公尸展開式中,的系數(shù)為-80,則于.

3_1

20、(x"x3)”的展開式中各項系數(shù)的和是128,則展開式中式的系數(shù)

是.(以數(shù)字作答)

21.(4+:)9的展開式中的常數(shù)項為(用數(shù)字作答).

22、若在二項式(廣I>。的展開式中任取一項,則該項的系數(shù)為奇數(shù)的概率

是.(結(jié)果用分數(shù)表示)

1

23、(X-忑)"展開式中V的系數(shù)為.

24、若在(l+ax)5展開式中,的系數(shù)為-80,則爐.

25、若(/+RT)〃的展開式中的常數(shù)項為84,則爐,

1

26、若(x+「-2)〃的展開式中常數(shù)項為-20,則自然數(shù)n=.

27、(X—忑)8展開式中,的系數(shù)為.

28、如圖,在由二項式系數(shù)所構(gòu)成的楊輝三角形中,第行中從左至右第14

與第15個數(shù)的比為2:3.

Biff1331

I.46-41

WfL510IQ5I

29、.在(1+x)+(1+x)?+…+(1+x)6的展開式中,/項的系數(shù)是.

(用數(shù)字作答)

的展開式中常數(shù)項為(用數(shù)字作答).

31、.^(1*2)*=X"+CX+r(XEH.1.X23),且“力?3:2,則

?=.

32、I,:展開式中的常數(shù)項是(用數(shù)字作答).

33、'X的展開式中,常數(shù)項為。(用數(shù)字作答)

2

34、在(1+x)+(1+x)+....+(1+x)6的展開式中,Xz項的系數(shù)是

(用數(shù)字作答)

(2x-^=)9

35、事的展開式中,常數(shù)項為o(用數(shù)字作答)

36、(設(shè)則d匕*^6、…+66?』=-

II

37、(R-2X〉)?的展開式中常數(shù)項是.

(/-9+a+3'

38、i/,/的展開式中整理后的常數(shù)項等于

39、己知(XC6,+:)5的展開式中/的系數(shù)與'丁的展開式中小的系數(shù)相等,則

CMO=

(2+2.+樹

40、2K的展開式中整理后的常數(shù)項為.

,T__M的展開式中的常數(shù)項是(用數(shù)字作答)

的展開式中的常數(shù)項是(用數(shù)字作答)

43、在口一。)”的展開式中,/的系數(shù)是15,則實數(shù)4=

(2T/X-—)e

44、X展開式中的常數(shù)項是(用數(shù)

字作答)。

7展開式中J的系數(shù)是(用數(shù)字作答)。

46、(ZX+W)'的二項展開式中X的系數(shù)是(用數(shù)字作答).

2

47、.在(X)”的展開式中,X5的系數(shù)為。

48、若(ax-l)5的展開式中必的系數(shù)是-80,則實數(shù)a的值是.

49、1/展開式中1的系數(shù)是(用數(shù)字作答)。

50、(X+W)'的二項展開式中X的系數(shù)是(用數(shù)字作答).

51、在'/的展開式中常數(shù)項是o(用數(shù)字

作答)

1

52.(2X一了尸展開式中的常數(shù)項為(用數(shù)字作答).

2

53、在(X-;)'的展開式中,好的系數(shù)是.(用數(shù)字作答)

54、(IT*)”展開式中Z3的系數(shù)為(用數(shù)字作答)

55、設(shè)常數(shù)?A。,I展開式中了的系數(shù)為2,則戊=o

二項式定理歷年高考試題薈萃(三)

一、填空題(本大題共24題,共計102分)

1、Q+2x)5的展開式中,的系數(shù)是.(用數(shù)字作答)

2、1X)的展開式中的第5項為常數(shù)項,那么正整數(shù)總的值

是.

3,已知X)$=斯+為芯+。2,+的,一劭苫,+。5/,則(即+。2+。4)(以1+他+牝)的

值等于.

1

4、(1+21)(1GT的展開式中常數(shù)項為O(用數(shù)字作答)

5、叛)展開式中含刀的整數(shù)次幕的項的系數(shù)之和為(用數(shù)字作答).

1

6、(1+2V)的展開式中常數(shù)項為o(用數(shù)字作答)

7、I的二項展開式中常數(shù)項是(用數(shù)字作答).

1

8、(V+06的展開式中常數(shù)項是.(用數(shù)字作答)

"上丫5

外若〔晟J的二項展開式中一的系數(shù)為5,貝必^______(用數(shù)字作答).

1

io、若(2三+而”的展開式中含有常數(shù)項,則最小的正整數(shù)n等

于.

1

11、(廣})9展開式中X,的系數(shù)是.(用數(shù)字作答)

12、若:'+口.展開式的各項系數(shù)之和為32,則n=,其展開式中

的常數(shù)項為o(用數(shù)字作答)

C4

13、'Z的展開式中14的系數(shù)為.(用數(shù)字作答)

55432

14、若(x-2)=a5x+a4x+a3x+a2x+aix+ao,則ai+a2+a3+a4+a5=.

15、(1+2/3(一入)4展開式中/的系數(shù)為.

16、'的展開式中常數(shù)項為;各項系數(shù)之和

為.(用數(shù)字作答)

2_

17、忑:廠的二項展開式中X?的系數(shù)是.(用數(shù)字作答)

1

18、(1+X3)(X+F)6展開式中的常數(shù)項為.

131J_l1

19、若x>0,貝!!(2—+3亍)(2-一*)-4(X-*與=.

268

20、已知(l+kx)(k是正整數(shù))的展開式中,x的系數(shù)小于120,則k=

21、記(2戶?)n的展開式中第勿項的系數(shù)為"若&=2&,則27=

2

22、(x+二”的二項展開式中/的系數(shù)為.(用數(shù)字作答)

1

23、已知(1+x+x?)(x+P)”的展開式中沒有常數(shù)項,nGN*且2WnW8,則

n=.

24、+展開式中X的系數(shù)為

二項式定理歷年高考試題薈萃(一)答案

一、選擇題(本大題共58題,共計290分)

1、D2、D3、C4、A5、C6、C7、C8、A9、A10、C

11

11、B解析:設(shè)展開式的第n+1項含/,第r2+l項含/,則

Z^+i=Cj(2x)(-1)x-

=C[2*f(-1)2%,

Tr.=C\?2”土(-1)既2x

--5--a

Ck(-爐

由已知得

?、及、AGN*,試根得ZT=6.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論