2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷含解析_第1頁
2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷含解析_第2頁
2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷含解析_第3頁
2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷含解析_第4頁
2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省臨滄市鎮(zhèn)康縣中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.有m輛客車及n個人,若每輛客車乘40人,則還有10人不能上車,若每輛客車乘43人,則只有1人不能上車,有下列四個等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正確的是()A.①② B.②④ C.②③ D.③④2.將拋物線y=x2﹣6x+21向左平移2個單位后,得到新拋物線的解析式為()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+33.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)4.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,5.如圖是由若干個小正方體塊搭成的幾何體的俯視圖,小正方塊中的數(shù)字表示在該位置的小正方體塊的個數(shù),那么這個幾何體的主視圖是()A. B. C. D.6.如圖是一個空心圓柱體,其俯視圖是()A.B.C.D.7.如圖是一個正方體的表面展開圖,如果對面上所標的兩個數(shù)互為相反數(shù),那么圖中的值是().A. B. C. D.8.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統(tǒng)計表如下.成績人數(shù)(頻數(shù))百分比(頻率)050.2105150.42050.1根據(jù)表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績?yōu)?0分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數(shù)為15分9.如圖是由五個相同的小立方塊搭成的幾何體,則它的俯視圖是()A. B. C. D.10.如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F(xiàn)分別為AB,AC,AD的中點,若BC=2,則EF的長度為()A.12B.1C.32二、填空題(共7小題,每小題3分,滿分21分)11.某小區(qū)購買了銀杏樹和玉蘭樹共150棵用來美化小區(qū)環(huán)境,購買銀杏樹用了12000元,購買玉蘭樹用了9000元.已知玉蘭樹的單價是銀杏樹單價的1.5倍,求銀杏樹和玉蘭樹的單價.設銀杏樹的單價為x元,可列方程為______.12.如果不等式無解,則a的取值范圍是________13.把多項式a3-2a2+a分解因式的結果是14.計算:2cos60°-+(5-π)°=____________.15.如圖,矩形ABCD中,AB=2AD,點A(0,1),點C、D在反比例函數(shù)y=(k>0)的圖象上,AB與x軸的正半軸相交于點E,若E為AB的中點,則k的值為_____.16.如圖,在四邊形ABCD中,點E、F分別是邊AB、AD的中點,BC=15,CD=9,EF=6,∠AFE=50°,則∠ADC的度數(shù)為_____.17.某種藥品原來售價100元,連續(xù)兩次降價后售價為81元,若每次下降的百分率相同,則這個百分率是.三、解答題(共7小題,滿分69分)18.(10分)如圖,AB為半圓O的直徑,AC是⊙O的一條弦,D為的中點,作DE⊥AC,交AB的延長線于點F,連接DA.求證:EF為半圓O的切線;若DA=DF=6,求陰影區(qū)域的面積.(結果保留根號和π)19.(5分)某小區(qū)為了安全起見,決定將小區(qū)內的滑滑板的傾斜角由45°調為30°,如圖,已知原滑滑板AB的長為4米,點D,B,C在同一水平地面上,調整后滑滑板會加長多少米?(結果精確到0.01米,參考數(shù)據(jù):,,)20.(8分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.21.(10分)風電已成為我國繼煤電、水電之后的第三大電源,風電機組主要由塔桿和葉片組成(如圖1),圖2是從圖1引出的平面圖.假設你站在A處測得塔桿頂端C的仰角是55°,沿HA方向水平前進43米到達山底G處,在山頂B處發(fā)現(xiàn)正好一葉片到達最高位置,此時測得葉片的頂端D(D、C、H在同一直線上)的仰角是45°.已知葉片的長度為35米(塔桿與葉片連接處的長度忽略不計),山高BG為10米,BG⊥HG,CH⊥AH,求塔桿CH的高.(參考數(shù)據(jù):tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6)22.(10分)某種商品每天的銷售利潤元,銷售單價元,間滿足函數(shù)關系式:,其圖象如圖所示.(1)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?(2)銷售單價在什么范圍時,該種商品每天的銷售利潤不低于21元?23.(12分)已知四邊形ABCD是⊙O的內接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長DE交⊙O于點F,延長DC,F(xiàn)B交于點P,如圖1.求證:PC=PB;(2)過點B作BG⊥AD,垂足為G,BG交DE于點H,且點O和點A都在DE的左側,如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.24.(14分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:首先要理解清楚題意,知道總的客車數(shù)量及總的人數(shù)不變,然后采用排除法進行分析從而得到正確答案.解:根據(jù)總人數(shù)列方程,應是40m+10=43m+1,①錯誤,④正確;根據(jù)客車數(shù)列方程,應該為,②錯誤,③正確;所以正確的是③④.故選D.考點:由實際問題抽象出一元一次方程.2、D【解析】

直接利用配方法將原式變形,進而利用平移規(guī)律得出答案.【詳解】y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣16]+21=(x﹣6)2+1,故y=(x﹣6)2+1,向左平移2個單位后,得到新拋物線的解析式為:y=(x﹣4)2+1.故選D.【點睛】本題考查了二次函數(shù)圖象與幾何變換,熟記函數(shù)圖象平移的規(guī)律并正確配方將原式變形是解題關鍵.3、A【解析】

關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變?yōu)橄喾磾?shù).【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.4、A【解析】

首先根據(jù)題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.5、B【解析】

根據(jù)俯視圖可確定主視圖的列數(shù)和每列小正方體的個數(shù).【詳解】由俯視圖可得,主視圖一共有兩列,左邊一列由兩個小正方體組成,右邊一列由3個小正方體組成.故答案選B.【點睛】由幾何體的俯視圖可確定該幾何體的主視圖和左視圖.6、D【解析】

根據(jù)從上邊看得到的圖形是俯視圖,可得答案.【詳解】該空心圓柱體的俯視圖是圓環(huán),如圖所示:故選D.【點睛】本題考查了三視圖,明確俯視圖是從物體上方看得到的圖形是解題的關鍵.7、D【解析】

根據(jù)正方體平面展開圖的特征得出每個相對面,再由相對面上的兩個數(shù)互為相反數(shù)可得出x的值.【詳解】解:“3”與“-3”相對,“y”與“-2”相對,“x”與“-8”相對,故x=8,故選D.【點睛】本題主要考查了正方體相對面上的文字,解決本題的關鍵是要熟練掌握正方體展開圖的特征.8、B【解析】

根據(jù)頻數(shù)÷頻率=總數(shù)可求出參加人數(shù),根據(jù)分別求出5分、15分、0分的人數(shù),即可求出平均分,根據(jù)0分的頻率即可求出800人中0分的人數(shù),根據(jù)中位數(shù)的定義求出中位數(shù),對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績?yōu)椋?10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績?yōu)?0分、15分,∴抽到同學參加知識競賽成績的中位數(shù)為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數(shù)及中位數(shù)的定義,熟練掌握相關知識是解題關鍵.9、A【解析】試題分析:從上面看易得上面一層有3個正方形,下面中間有一個正方形.故選A.【考點】簡單組合體的三視圖.10、B【解析】

根據(jù)題意求出AB的值,由D是AB中點求出CD的值,再由題意可得出EF是△ACD的中位線即可求出.【詳解】∵∠ACB=90°,∠A=30°,∴BC=12∵BC=2,∴AB=2BC=2×2=4,∵D是AB的中點,∴CD=12AB=12∵E,F分別為AC,AD的中點,∴EF是△ACD的中位線.∴EF=12CD=12故答案選B.【點睛】本題考查的知識點是三角形中位線定理,解題的關鍵是熟練的掌握三角形中位線定理.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】

根據(jù)銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)“某小區(qū)購買了銀杏樹和玉蘭樹共1棵”列出方程即可.【詳解】設銀杏樹的單價為x元,則玉蘭樹的單價為1.5x元,根據(jù)題意,得:1.故答案為:1.【點睛】本題考查了由實際問題抽象出分式方程,找到關鍵描述語,找到合適的等量關系是解決問題的關鍵.12、a≥1【解析】

將不等式組解出來,根據(jù)不等式組無解,求出a的取值范圍.【詳解】解得,∵無解,∴a≥1.故答案為a≥1.【點睛】本題考查了解一元一次不等式組,解題的關鍵是熟練的掌握解一元一次不等式組的運算法則.13、.【解析】要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方式或平方差式,若是就考慮用公式法繼續(xù)分解因式.因此,.14、1【解析】解:原式==1-2+1=1.故答案為1.15、【解析】解:如圖,作DF⊥y軸于F,過B點作x軸的平行線與過C點垂直與x軸的直線交于G,CG交x軸于K,作BH⊥x軸于H,∵四邊形ABCD是矩形,∴∠BAD=90°,∴∠DAF+∠OAE=90°,∵∠AEO+∠OAE=90°,∴∠DAF=∠AEO,∵AB=2AD,E為AB的中點,∴AD=AE,在△ADF和△EAO中,∵∠DAF=∠AEO,∠AFD=∠AOE=90°,AD=AE,∴△ADF≌△EAO(AAS),∴DF=OA=1,AF=OE,∴D(1,k),∴AF=k﹣1,同理;△AOE≌△BHE,△ADF≌△CBG,∴BH=BG=DF=OA=1,EH=CG=OE=AF=k﹣1,∴OK=2(k﹣1)+1=2k﹣1,CK=k﹣2,∴C(2k﹣1,k﹣2),∴(2k﹣1)(k﹣2)=1k,解得k1=,k2=,∵k﹣1>0,∴k=.故答案為.點睛:本題考查了矩形的性質和反比例函數(shù)圖象上點的坐標特征.圖象上的點(x,y)的橫縱坐標的積是定值k,即xy=k.16、140°【解析】

如圖,連接BD,∵點E、F分別是邊AB、AD的中點,∴EF是△ABD的中位線,∴EF∥BD,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°.故答案為:140°.17、10%.【解析】

設平均每次降價的百分率為,那么第一次降價后的售價是原來的,那么第二次降價后的售價是原來的,根據(jù)題意列方程解答即可.【詳解】設平均每次降價的百分率為,根據(jù)題意列方程得,,解得,(不符合題意,舍去),答:這個百分率是.故答案為.【點睛】本題考查一元二次方程的應用,要掌握求平均變化率的方法.若設變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關系為.三、解答題(共7小題,滿分69分)18、(1)證明見解析(2)﹣6π【解析】

(1)直接利用切線的判定方法結合圓心角定理分析得出OD⊥EF,即可得出答案;(2)直接利用得出S△ACD=S△COD,再利用S陰影=S△AED﹣S扇形COD,求出答案.【詳解】(1)證明:連接OD,∵D為弧BC的中點,∴∠CAD=∠BAD,∵OA=OD,∴∠BAD=∠ADO,∴∠CAD=∠ADO,∵DE⊥AC,∴∠E=90°,∴∠CAD+∠EDA=90°,即∠ADO+∠EDA=90°,∴OD⊥EF,∴EF為半圓O的切線;(2)解:連接OC與CD,∵DA=DF,∴∠BAD=∠F,∴∠BAD=∠F=∠CAD,又∵∠BAD+∠CAD+∠F=90°,∴∠F=30°,∠BAC=60°,∵OC=OA,∴△AOC為等邊三角形,∴∠AOC=60°,∠COB=120°,∵OD⊥EF,∠F=30°,∴∠DOF=60°,在Rt△ODF中,DF=6,∴OD=DF?tan30°=6,在Rt△AED中,DA=6,∠CAD=30°,∴DE=DA?sin30°=3,EA=DA?cos30°=9,∵∠COD=180°﹣∠AOC﹣∠DOF=60°,由CO=DO,∴△COD是等邊三角形,∴∠OCD=60°,∴∠DCO=∠AOC=60°,∴CD∥AB,故S△ACD=S△COD,∴S陰影=S△AED﹣S扇形COD==.【點睛】此題主要考查了切線的判定,圓周角定理,等邊三角形的判定與性質,解直角三角形及扇形面積求法等知識,得出S△ACD=S△COD是解題關鍵.19、改善后滑板會加長1.1米.【解析】

在Rt△ABC中,根據(jù)AB=4米,∠ABC=45°,求出AC的長度,然后在Rt△ADC中,解直角三角形求AD的長度,用AD-AB即可求出滑板加長的長度.【詳解】解:在Rt△ABC中,AC=AB?sin45°=4×=,在Rt△ADC中,AD=2AC=,AD-AB=-4≈1.1.答:改善后滑板會加長1.1米.【點睛】本題主要考查了解直角三角形的應用,利用這兩個直角三角形公共的直角邊解直角三角形是解答本題的關鍵.20、(1);(2)【解析】

(1)利用概率公式直接計算即可;

(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,求出概率.21、1米.【解析】試題分析:作BE⊥DH,知GH=BE、BG=EH=10,設AH=x,則BE=GH=43+x,由CH=AHtan∠CAH=tan55°?x知CE=CH﹣EH=tan55°?x﹣10,根據(jù)BE=DE可得關于x的方程,解之可得.試題解析:解:如圖,作BE⊥DH于點E,則GH=BE、BG=EH=10,設AH=x,則BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°?x,∴CE=CH﹣EH=tan55°?x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°?x﹣10+35,解得:x≈45,∴CH=tan55°?x=1.4×45=1.答:塔桿CH的高為1米.點睛:本題考查了解直角三角形的應用,解答本題要求學生能借助仰角構造直角三角形并解直角三角形.22、(1)10,1;(2).【解析】

(1)將點代入中,求出函數(shù)解析式,再根據(jù)二次函數(shù)的性質求出最大值即可;(2)求出對稱軸為直線,可知點關于對稱軸的對稱點是,再根據(jù)圖象判斷出x的取值范圍即可.【詳解】解:(1)圖象過點,,解得..的頂點坐標為.,∴當時,最大=1.答:該商品的銷售單價為10元時,每天的銷售利潤最大,最大利潤為1元.(2)∵函數(shù)圖象的對稱軸為直線,可知點關于對稱軸的對稱點是,又∵函數(shù)圖象開口向下,∴當時,.答:銷售單價不少于8元且不超過12元時,該種商品每天的銷售利潤不低于21元.【點睛】本題考查了待定系數(shù)法求二次函數(shù)解析式以及二次函數(shù)的性質,解題的關鍵是熟悉待定系數(shù)法以及二次函數(shù)的性質.23、(1)詳見解析;(2)∠BDE=20°.【解析】

(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質可得∠F=∠PBC;再利用同角的補角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質可得∠OAD=∠DOC=2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論