2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題含解析_第1頁
2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題含解析_第2頁
2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題含解析_第3頁
2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題含解析_第4頁
2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2023-2024學年安徽省宣城市宣州區(qū)裘公校中考數(shù)學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列運算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a22.如圖,在△ABC中,分別以點A和點C為圓心,大于AC長為半徑畫弧,兩弧相交于點M,N,作直線MN分別交BC,AC于點D,E,若AE=3cm,△ABD的周長為13cm,則△ABC的周長為()A.16cm B.19cm C.22cm D.25cm3.下列四個圖形分別是四屆國際數(shù)學家大會的會標,其中屬于中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個4.下列各式計算正確的是()A. B. C. D.5.下列各數(shù)中最小的是()A.0 B.1 C.﹣ D.﹣π6.在剛剛結(jié)束的中考英語聽力、口語測試中,某班口語成績情況如圖所示,則下列說法正確的是()A.中位數(shù)是9 B.眾數(shù)為16 C.平均分為7.78 D.方差為27.二元一次方程組的解是()A. B. C. D.8.在體育課上,甲,乙兩名同學分別進行了5次跳遠測試,經(jīng)計算他們的平均成績相同.若要比較這兩名同學的成績哪一個更為穩(wěn)定,通常需要比較他們成績的()A.眾數(shù) B.平均數(shù) C.中位數(shù) D.方差9.已知☉O的半徑為5,且圓心O到直線l的距離是方程x2-4x-12=0的一個根,則直線l與圓的位置關(guān)系是()A.相交B.相切C.相離D.無法確定10.下列圖形是由同樣大小的棋子按照一定規(guī)律排列而成的,其中,圖①中有5個棋子,圖②中有10個棋子,圖③中有16個棋子,…,則圖⑥________中有個棋子()A.31 B.35 C.40 D.50二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,點C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點D在線段AB上運動,點E與點D關(guān)于AC對稱,DF⊥DE于點D,并交EC的延長線于點F.下列結(jié)論:①CE=CF;②線段EF的最小值為;③當AD=2時,EF與半圓相切;④若點F恰好落在BC上,則AD=;⑤當點D從點A運動到點B時,線段EF掃過的面積是.其中正確結(jié)論的序號是.12.已知圖中Rt△ABC,∠B=90°,AB=BC,斜邊AC上的一點D,滿足AD=AB,將線段AC繞點A逆時針旋轉(zhuǎn)α(0°<α<360°),得到線段AC’,連接DC’,當DC’//BC時,旋轉(zhuǎn)角度α的值為_________,13.有三個大小一樣的正六邊形,可按下列方式進行拼接:方式1:如圖1;方式2:如圖2;若有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.有個邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________.14.已知一次函數(shù)y=ax+b,且2a+b=1,則該一次函數(shù)圖象必經(jīng)過點_____.15.如圖,矩形ABCD中,AB=1,BC=2,點P從點B出發(fā),沿B-C-D向終點D勻速運動,設(shè)點P走過的路程為x,△ABP的面積為S,能正確反映S與x之間函數(shù)關(guān)系的圖象是()A. B. C. D.16.若式子有意義,則x的取值范圍是______.三、解答題(共8題,共72分)17.(8分)如圖,AB∥CD,△EFG的頂點F,G分別落在直線AB,CD上,GE交AB于點H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度數(shù).18.(8分)如圖,某人在山坡坡腳A處測得電視塔尖點C的仰角為60°,沿山坡向上走到P處再測得點C的仰角為45°,已知OA=100米,山坡坡度(豎直高度與水平寬度的比)i=1:2,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置點P的鉛直高度.(測傾器高度忽略不計,結(jié)果保留根號形式)19.(8分)如圖,為的直徑,,為上一點,過點作的弦,設(shè).(1)若時,求、的度數(shù)各是多少?(2)當時,是否存在正實數(shù),使弦最短?如果存在,求出的值,如果不存在,說明理由;(3)在(1)的條件下,且,求弦的長.20.(8分)如圖,AB為⊙O的直徑,點D、E位于AB兩側(cè)的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.21.(8分)如圖,C是⊙O上一點,點P在直徑AB的延長線上,⊙O的半徑為3,PB=2,PC=1.(1)求證:PC是⊙O的切線.(2)求tan∠CAB的值.22.(10分)如圖,在平面直角坐標系中,直線經(jīng)過點和,雙曲線經(jīng)過點B.(1)求直線和雙曲線的函數(shù)表達式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當點C在雙曲線上時,求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當時,請直接寫出t的值.23.(12分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx24.AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點D,CA=CD.(1)連接BC,求證:BC=OB;(2)E是中點,連接CE,BE,若BE=2,求CE的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.2、B【解析】

根據(jù)作法可知MN是AC的垂直平分線,利用垂直平分線的性質(zhì)進行求解即可得答案.【詳解】解:根據(jù)作法可知MN是AC的垂直平分線,∴DE垂直平分線段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周長=AB+BD+BC+AC=13+6=19cm,故選B.【點睛】本題考查作圖-基本作圖,線段的垂直平分線的性質(zhì)等知識,解題的關(guān)鍵是熟練掌握線段的垂直平分線的性質(zhì).3、B【解析】

解:根據(jù)中心對稱的概念可得第一個圖形是中心對稱圖形,第二個圖形不是中心對稱圖形,第三個圖形是中心對稱圖形,第四個圖形不是中心對稱圖形,所以,中心對稱圖有2個.故選B.【點睛】本題考查中心對稱圖形的識別,掌握中心對稱圖形的概念是本題的解題關(guān)鍵.4、B【解析】A選項中,∵不是同類二次根式,不能合并,∴本選項錯誤;B選項中,∵,∴本選項正確;C選項中,∵,而不是等于,∴本選項錯誤;D選項中,∵,∴本選項錯誤;故選B.5、D【解析】

根據(jù)任意兩個實數(shù)都可以比較大?。龑崝?shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小即可判斷.【詳解】﹣π<﹣<0<1.則最小的數(shù)是﹣π.故選:D.【點睛】本題考查了實數(shù)大小的比較,理解任意兩個實數(shù)都可以比較大小.正實數(shù)都大于0,負實數(shù)都小于0,正實數(shù)大于一切負實數(shù),兩個負實數(shù)絕對值大的反而小是關(guān)鍵.6、A【解析】

根據(jù)中位數(shù),眾數(shù),平均數(shù),方差等知識即可判斷;【詳解】觀察圖象可知,共有50個學生,從低到高排列后,中位數(shù)是25位與26位的平均數(shù),即為1.故選A.【點睛】本題考查中位數(shù),眾數(shù),平均數(shù),方差的定義,解題的關(guān)鍵是熟練掌握基本知識,屬于中考常考題型.7、B【解析】

利用加減消元法解二元一次方程組即可得出答案【詳解】解:①﹣②得到y(tǒng)=2,把y=2代入①得到x=4,∴,故選:B.【點睛】此題考查了解二元一次方程組,解方程組利用了消元的思想,消元的方法有:代入消元法與加減消元法.8、D【解析】

方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則各數(shù)據(jù)與其平均值的離散程度越大,穩(wěn)定性也越?。环粗?,則各數(shù)據(jù)與其平均值的離散程度越小,穩(wěn)定性越好。【詳解】由于方差能反映數(shù)據(jù)的穩(wěn)定性,需要比較這兩名學生立定跳遠成績的方差.故選D.9、C【解析】

首先求出方程的根,再利用半徑長度,由點O到直線a的距離為d,若d<r,則直線與圓相交;若d=r,則直線與圓相切;若d>r,則直線與與圓相離.【詳解】∵x2-4x-12=0,

(x+2)(x-6)=0,

解得:x1=-2(不合題意舍去),x2=6,

∵點O到直線l距離是方程x2-4x-12=0的一個根,即為6,

∴點O到直線l的距離d=6,r=5,

∴d>r,

∴直線l與圓相離.故選:C【點睛】本題考核知識點:直線與圓的位置關(guān)系.解題關(guān)鍵點:理解直線與圓的位置關(guān)系的判定方法.10、C【解析】

根據(jù)題意得出第n個圖形中棋子數(shù)為1+2+3+…+n+1+2n,據(jù)此可得.【詳解】解:∵圖1中棋子有5=1+2+1×2個,圖2中棋子有10=1+2+3+2×2個,圖3中棋子有16=1+2+3+4+3×2個,…∴圖6中棋子有1+2+3+4+5+6+7+6×2=40個,故選C.【點睛】本題考查了圖形的變化規(guī)律,通過從一些特殊的圖形變化中發(fā)現(xiàn)不變的因素或按規(guī)律變化的因素,然后推廣到一般情況.二、填空題(本大題共6個小題,每小題3分,共18分)11、①③⑤.【解析】試題分析:①連接CD,如圖1所示,∵點E與點D關(guān)于AC對稱,∴CE=CD,∴∠E=∠CDE,∵DF⊥DE,∴∠EDF=90°,∴∠E+∠F=90°,∠CDE+∠CDF=90°,∴∠F=∠CDF,∴CD=CF,∴CE=CD=CF,∴結(jié)論“CE=CF”正確;②當CD⊥AB時,如圖2所示,∵AB是半圓的直徑,∴∠ACB=90°,∵AB=8,∠CBA=30°,∴∠CAB=60°,AC=4,BC=.∵CD⊥AB,∠CBA=30°,∴CD=BC=.根據(jù)“點到直線之間,垂線段最短”可得:點D在線段AB上運動時,CD的最小值為.∵CE=CD=CF,∴EF=2CD.∴線段EF的最小值為.∴結(jié)論“線段EF的最小值為”錯誤;③當AD=2時,連接OC,如圖3所示,∵OA=OC,∠CAB=60°,∴△OAC是等邊三角形,∴CA=CO,∠ACO=60°,∵AO=4,AD=2,∴DO=2,∴AD=DO,∴∠ACD=∠OCD=30°,∵點E與點D關(guān)于AC對稱,∴∠ECA=∠DCA,∴∠ECA=30°,∴∠ECO=90°,∴OC⊥EF,∵EF經(jīng)過半徑OC的外端,且OC⊥EF,∴EF與半圓相切,∴結(jié)論“EF與半圓相切”正確;④當點F恰好落在上時,連接FB、AF,如圖4所示,∵點E與點D關(guān)于AC對稱,∴ED⊥AC,∴∠AGD=90°,∴∠AGD=∠ACB,∴ED∥BC,∴△FHC∽△FDE,∴FH:FD=FC:FE,∵FC=EF,∴FH=FD,∴FH=DH,∵DE∥BC,∴∠FHC=∠FDE=90°,∴BF=BD,∴∠FBH=∠DBH=30°,∴∠FBD=60°,∵AB是半圓的直徑,∴∠AFB=90°,∴∠FAB=30°,∴FB=AB=4,∴DB=4,∴AD=AB﹣DB=4,∴結(jié)論“AD=”錯誤;⑤∵點D與點E關(guān)于AC對稱,點D與點F關(guān)于BC對稱,∴當點D從點A運動到點B時,點E的運動路徑AM與AB關(guān)于AC對稱,點F的運動路徑NB與AB關(guān)于BC對稱,∴EF掃過的圖形就是圖5中陰影部分,∴S陰影=2S△ABC=2×AC?BC=AC?BC=4×=,∴EF掃過的面積為,∴結(jié)論“EF掃過的面積為”正確.故答案為①③⑤.考點:1.圓的綜合題;2.等邊三角形的判定與性質(zhì);3.切線的判定;4.相似三角形的判定與性質(zhì).12、15或255°【解析】如下圖,設(shè)直線DC′與AB相交于點E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=AC,∴AE=AD,又∵AD=AB,AC′=AC,∴AE=AB=AC=AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即當DC′∥BC時,旋轉(zhuǎn)角=15°;同理,當DC′′∥BC時,旋轉(zhuǎn)角=180°-45°-60°=255°;綜上所述,當旋轉(zhuǎn)角=15°或255°時,DC′//BC.故答案為:15°或255°.13、181【解析】

有四個邊長均為1的正六邊形,采用方式1拼接,利用4n+2的規(guī)律計算;把六個正六邊形圍著一個正六邊按照方式2進行拼接可使周長為8,六邊形的個數(shù)最多.【詳解】解:有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長為4×4+2=18;按下圖拼接,圖案的外輪廓的周長為18,此時正六邊形的個數(shù)最多,即n的最大值為1.故答案為:18;1.【點睛】本題考查了正多邊形和圓,以及圖形的變化類規(guī)律總結(jié)問題,根據(jù)題意,得出規(guī)律是解決此題的關(guān)鍵.14、(2,1)【解析】∵一次函數(shù)y=ax+b,∴當x=2,y=2a+b,又2a+b=1,∴當x=2,y=1,即該圖象一定經(jīng)過點(2,1).故答案為(2,1).15、C【解析】

分出情況當P點在BC上運動,與P點在CD上運動,得到關(guān)系,選出圖象即可【詳解】由題意可知,P從B開始出發(fā),沿B—C—D向終點D勻速運動,則當0<x≤2,s=x當2<x≤3,s=1所以剛開始的時候為正比例函數(shù)s=x圖像,后面為水平直線,故選C【點睛】本題主要考查實際問題與函數(shù)圖像,關(guān)鍵在于讀懂題意,弄清楚P的運動狀態(tài)16、x>.【解析】解:依題意得:2x+3>1.解得x>.故答案為x>.三、解答題(共8題,共72分)17、20°【解析】

依據(jù)三角形內(nèi)角和定理可得∠FGH=55°,再根據(jù)GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根據(jù)∠FHG是△EFH的外角,即可得出∠EFB=55°-35°=20°.【詳解】∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【點睛】本題考查了平行線的性質(zhì),兩直線平行時,應該想到它們的性質(zhì),由兩直線平行的關(guān)系得到角之間的數(shù)量關(guān)系,從而達到解決問題的目的.18、電視塔高為米,點的鉛直高度為(米).【解析】

過點P作PF⊥OC,垂足為F,在Rt△OAC中利用三角函數(shù)求出OC=100,根據(jù)山坡坡度=1:2表示出PB=x,AB=2x,在Rt△PCF中利用三角函數(shù)即可求解.【詳解】過點P作PF⊥OC,垂足為F.在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA?tan∠OAC=100(米),過點P作PB⊥OA,垂足為B.由i=1:2,設(shè)PB=x,則AB=2x.∴PF=OB=100+2x,CF=100﹣x.在Rt△PCF中,由∠CPF=45°,∴PF=CF,即100+2x=100﹣x,∴x=,即PB=米.【點睛】本題考查了特殊的直角三角形,三角函數(shù)的實際應用,中等難度,作出輔助線構(gòu)造直角三角形并熟練應用三角函數(shù)是解題關(guān)鍵.19、(1),;(2)見解析;(3).【解析】

(1)連結(jié)AD、BD,利用m求出角的關(guān)系進而求出∠BCD、∠ACD的度數(shù);

(2)連結(jié),由所給關(guān)系式結(jié)合直徑求出AP,OP,根據(jù)弦CD最短,求出∠BCD、∠ACD的度數(shù),即可求出m的值.

(3)連結(jié)AD、BD,先求出AD,BD,AP,BP的長度,利用△APC∽△DPB和△CPB∽△APD得出比例關(guān)系式,得出比例關(guān)系式結(jié)合勾股定理求出CP,PD,即可求出CD.【詳解】解:(1)如圖1,連結(jié)、.是的直徑,又,,(2)如圖2,連結(jié).,,,則,解得要使最短,則于,,,故存在這樣的值,且;(3)如圖3,連結(jié)、.由(1)可得,,,,,,,,①,②同理,③,由①得,由③得,在中,,,由②,得,.【點睛】本題考查了相似三角形的判定與性質(zhì)和銳角三角函數(shù)關(guān)系和圓周角定理等知識,掌握圓周角定理以及垂徑定理是解題的關(guān)鍵.20、(1)詳見解析;(2)①67.5°;②90°.【解析】

(1)要證明CD∥AB,只要證明∠ODF=∠AOD即可,根據(jù)題目中的條件可以證明∠ODF=∠AOD,從而可以解答本題;(2)①根據(jù)四邊形ADFP是菱形和菱形的性質(zhì),可以求得∠DAE的度數(shù);②根據(jù)四邊形BFDP是正方形,可以求得∠DAE的度數(shù).【詳解】(1)證明:連接OD,如圖所示,∵射線DC切⊙O于點D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD=2∠AED=90°,∴∠ODF=∠AOD,∴CD∥AB;(2)①連接AF與DP交于點G,如圖所示,∵四邊形ADFP是菱形,∠AED=45°,OA=OD,∴AF⊥DP,∠AOD=90°,∠DAG=∠PAG,∴∠AGE=90°,∠DAO=45°,∴∠EAG=45°,∠DAG=∠PEG=22.5°,∴∠EAD=∠DAG+∠EAG=22.5°+45°=67.5°,故答案為:67.5°;②∵四邊形BFDP是正方形,∴BF=FD=DP=PB,∠DPB=∠PBF=∠BFD=∠FDP=90°,∴此時點P與點O重合,∴此時DE是直徑,∴∠EAD=90°,故答案為:90°.【點睛】本題考查菱形的判定與性質(zhì)、切線的性質(zhì)、正方形的判定,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用菱形的性質(zhì)和正方形的性質(zhì)解答.21、(1)見解析;(2)12【解析】

(1)連接OC、BC,根據(jù)題意可得OC2+PC2=OP2,即可證得OC⊥PC,由此可得出結(jié)論.(2)先根據(jù)題意證明出△PBC∽△PCA,再根據(jù)相似三角形的性質(zhì)得出邊的比值,由此可得出結(jié)論.【詳解】(1)如圖,連接OC、BC∵⊙O的半徑為3,PB=2∴OC=OB=3,OP=OB+PB=5∵PC=1∴OC2+PC2=OP2∴△OCP是直角三角形,∴OC⊥PC∴PC是⊙O的切線.(2)∵AB是直徑∴∠ACB=90°∴∠ACO+∠OCB=90°∵OC⊥PC∴∠BCP+∠OCB=90°∴∠BCP=∠ACO∵OA=OC∴∠A=∠ACO∴∠A=∠BCP在△PBC和△PCA中:∠BCP=∠A,∠P=∠P∴△PBC∽△PCA,∴∴tan∠CAB=【點睛】本題考查了切線與相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟練的掌握切線的判定與相似三角形的判定與性質(zhì).22、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】

(1)由點利用待定系數(shù)法可求出直線的表達式;再由直線的表達式求出點B的坐標,然后利用待定系數(shù)法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標,再將其代入雙曲線的表達式求出點C的縱坐標,從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經(jīng)過點和∴將點代入得解得故直線的表達式為將點代入直線的表達式得解得∵雙曲線經(jīng)過點,解得故雙曲線的表達式為;(2)①軸,點A的坐標為∴點C的橫坐標為12將其代入雙曲線的表達式得∴C的縱坐標為,即由題意得,解得故當點C在雙曲線上時,t的值為;②當時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點D與點A不重合,且在點A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點共圓,點K為圓心(圓周角定理);③過點B作于M由題意和②可知,點D在點A左側(cè),與點M重合是一個臨界位置此時,四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當時,過點C作于N又,即由勾股定理得即解得或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論