2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題含解析_第1頁
2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題含解析_第2頁
2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題含解析_第3頁
2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題含解析_第4頁
2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題含解析_第5頁
已閱讀5頁,還剩21頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023-2024學年甘肅省張掖甘州中學中考聯(lián)考數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.已知空氣的單位體積質(zhì)量是0.001239g/cm3,則用科學記數(shù)法表示該數(shù)為()A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm32.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大3.若分式有意義,則的取值范圍是()A.; B.; C.; D..4.將不等式組的解集在數(shù)軸上表示,下列表示中正確的是()A. B. C. D.5.現(xiàn)有三張背面完全相同的卡片,正面分別標有數(shù)字﹣1,﹣2,3,把卡片背面朝上洗勻,然后從中隨機抽取兩張,則這兩張卡片正面數(shù)字之和為正數(shù)的概率是()A. B. C. D.6.不等式的解集在數(shù)軸上表示正確的是()A. B. C. D.7.下列計算正確的是(

).A.(x+y)2=x2+y2 B.(-xy2)3=-x3y6C.x6÷x3=x2 D.=28.如圖,在中,點D為AC邊上一點,則CD的長為()A.1 B. C.2 D.9.PM2.5是指大氣中直徑小于或等于2.5μm(1μm=0.000001m)的顆粒物,也稱為可入肺顆粒物,它們含有大量的有毒、有害物質(zhì),對人體健康和大氣環(huán)境質(zhì)量有很大危害.2.5μm用科學記數(shù)法可表示為()A. B. C. D.10.為喜迎黨的十九大召開,樂陵某中學剪紙社團進行了剪紙大賽,下列作品既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,半徑為3的⊙O與Rt△AOB的斜邊AB切于點D,交OB于點C,連接CD交直線OA于點E,若∠B=30°,則線段AE的長為.12.在△ABC中,AB=AC,把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N.如果△CAN是等腰三角形,則∠B的度數(shù)為___________.13.請從以下兩個小題中任選一個作答,若多選,則按第一題計分.A.正多邊形的一個外角是40°,則這個正多邊形的邊數(shù)是____________.B.運用科學計算器比較大?。篲_______sin37.5°.14.一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為:_________________15.如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,點M、N分別在線段AC、AB上,將△ANM沿直線MN折疊,使點A的對應點D恰好落在線段BC上,當△DCM為直角三角形時,折痕MN的長為__.16.如圖是由兩個長方體組合而成的一個立體圖形的三視圖,根據(jù)圖中所示尺寸(單位:mm),計算出這個立體圖形的表面積.三、解答題(共8題,共72分)17.(8分)如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.判斷AF與⊙O的位置關系并說明理由;若⊙O的半徑為4,AF=3,求AC的長.18.(8分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=的圖象在第一象限交于點A(4,3),與y軸的負半軸交于點B,且OA=OB.(1)求一次函數(shù)y=kx+b和y=的表達式;(2)已知點C在x軸上,且△ABC的面積是8,求此時點C的坐標;(3)反比例函數(shù)y=(1≤x≤4)的圖象記為曲線C1,將C1向右平移3個單位長度,得曲線C2,則C1平移至C2處所掃過的面積是_________.(直接寫出答案)19.(8分)如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點A(m,﹣2).求反比例函數(shù)的解析式;觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;若雙曲線上點C(2,n)沿OA方向平移個單位長度得到點B,判斷四邊形OABC的形狀并證明你的結(jié)論.20.(8分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是;△A2B2C2的面積是平方單位.21.(8分)正方形ABCD的邊長是10,點E是AB的中點,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.(1)如圖1,連接AB′.①若△AEB′為等邊三角形,則∠BEF等于多少度.②在運動過程中,線段AB′與EF有何位置關系?請證明你的結(jié)論.(2)如圖2,連接CB′,求△CB′F周長的最小值.(3)如圖3,連接并延長BB′,交AC于點P,當BB′=6時,求PB′的長度.22.(10分)為支援雅安災區(qū),某學校計劃用“義捐義賣”活動中籌集的部分資金用于購買A,B兩種型號的學習用品共1000件,已知A型學習用品的單價為20元,B型學習用品的單價為30元.若購買這批學習用品用了26000元,則購買A,B兩種學習用品各多少件?若購買這批學習用品的錢不超過28000元,則最多購買B型學習用品多少件?23.(12分)截至2018年5月4日,中歐班列(鄭州)去回程開行共計1191班,我省與歐洲各國經(jīng)貿(mào)往來日益頻繁,某歐洲客商準備在河南采購一批特色商品,經(jīng)調(diào)查,用1600元采購A型商品的件數(shù)是用1000元采購B型商品的件數(shù)的2倍,一件A型商品的進價比一件B型商品的進價少20元,已知A型商品的售價為160元,B型商品的售價為240元,已知該客商購進甲乙兩種商品共200件,設其中甲種商品購進x件,該客商售完這200件商品的總利潤為y元(1)求A、B型商品的進價;(2)該客商計劃最多投入18000元用于購買這兩種商品,則至少要購進多少件甲商品?若售完這些商品,則商場可獲得的最大利潤是多少元?(3)在(2)的基礎上,實際進貨時,生產(chǎn)廠家對甲種商品的出廠價下調(diào)a元(50<a<70)出售,且限定商場最多購進120件,若客商保持同種商品的售價不變,請你根據(jù)以上信息及(2)中的條件,設計出使該客商獲得最大利潤的進貨方案.24.如圖1,矩形ABCD中,E是AD的中點,以點E直角頂點的直角三角形EFG的兩邊EF,EG分別過點B,C,∠F=30°.(1)求證:BE=CE(2)將△EFG繞點E按順時針方向旋轉(zhuǎn),當旋轉(zhuǎn)到EF與AD重合時停止轉(zhuǎn)動.若EF,EG分別與AB,BC相交于點M,N.(如圖2)①求證:△BEM≌△CEN;②若AB=2,求△BMN面積的最大值;③當旋轉(zhuǎn)停止時,點B恰好在FG上(如圖3),求sin∠EBG的值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】試題分析:0.001219=1.219×10﹣1.故選A.考點:科學記數(shù)法—表示較小的數(shù).2、A【解析】分析:根據(jù)平均數(shù)的計算公式進行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.3、B【解析】

分式的分母不為零,即x-2≠1.【詳解】∵分式有意義,∴x-2≠1,∴.故選:B.【點睛】考查了分式有意義的條件,(1)分式無意義?分母為零;(2)分式有意義?分母不為零;(3)分式值為零?分子為零且分母不為零.4、B【解析】先解不等式組中的每一個不等式,再把不等式的解集表示在數(shù)軸上即可.解:不等式可化為:,即.

∴在數(shù)軸上可表示為.故選B.“點睛”不等式組的解集在數(shù)軸上表示的方法:把每個不等式的解集在數(shù)軸上表示出來(>,≥向右畫;<,≤向左畫),在表示解集時“≥”,“≤”要用實心圓點表示;“<”,“>”要用空心圓點表示.5、D【解析】

先找出全部兩張卡片正面數(shù)字之和情況的總數(shù),再先找出全部兩張卡片正面數(shù)字之和為正數(shù)情況的總數(shù),兩者的比值即為所求概率.【詳解】任取兩張卡片,數(shù)字之和一共有﹣3、2、1三種情況,其中和為正數(shù)的有2、1兩種情況,所以這兩張卡片正面數(shù)字之和為正數(shù)的概率是.故選D.【點睛】本題主要考查概率的求法,熟練掌握概率的求法是解題的關鍵.6、B【解析】

根據(jù)不等式的性質(zhì):先移項,再合并即可解得不等式的解集,最后將解集表示在數(shù)軸上即可.【詳解】解:解:移項得,

x≤3-2,

合并得,

x≤1;

在數(shù)軸上表示應包括1和它左邊的部分,如下:;

故選:B.【點睛】本題考查了一元一次不等式的解集的求法及在數(shù)軸上表示不等式的解集,注意數(shù)軸上包括的端點實心點表示.7、D【解析】分析:根據(jù)完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義計算,判斷即可.詳解:(x+y)2=x2+2xy+y2,A錯誤;(-xy2)3=-x3y6,B錯誤;x6÷x3=x3,C錯誤;==2,D正確;故選D.點睛:本題考查的是完全平方公式、積的乘方、同底數(shù)冪的除法以及算術平方根的計算,掌握完全平方公式、積的乘方法則、同底數(shù)冪的除法法則和算術平方根的定義是解題的關鍵.8、C【解析】

根據(jù)∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根據(jù)相似三角形對應邊的比相等得到代入求值即可.【詳解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故選:C.【點睛】主要考查相似三角形的判定與性質(zhì),掌握相似三角形的判定定理是解題的關鍵.9、C【解析】試題分析:大于0而小于1的數(shù)用科學計數(shù)法表示,10的指數(shù)是負整數(shù),其絕對值等于第一個不是0的數(shù)字前所有0的個數(shù).考點:用科學計數(shù)法計數(shù)10、C【解析】

根據(jù)軸對稱和中心對稱的定義去判斷即可得出正確答案.【詳解】解:A、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤;B、不是軸對稱圖形,也不是中心對稱圖形,故此選項錯誤;C、是軸對稱圖形,也是中心對稱圖形,故此選項正確;D、是軸對稱圖形,不是中心對稱圖形,故此選項錯誤.故選:C.【點睛】本題考查的是軸對稱和中心對稱的知識點,解題關鍵在于對知識點的理解和把握.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】

要求AE的長,只要求出OA和OE的長即可,要求OA的長可以根據(jù)∠B=30°和OB的長求得,OE可以根據(jù)∠OCE和OC的長求得.【詳解】解:連接OD,如圖所示,由已知可得,∠BOA=90°,OD=OC=3,∠B=30°,∠ODB=90°,∴BO=2OD=6,∠BOD=60°,∴∠ODC=∠OCD=60°,AO=BOtan30°=6×=2,∵∠COE=90°,OC=3,∴OE=OCtan60°=3×=3,∴AE=OE﹣OA=3-2=,【點晴】切線的性質(zhì)12、或.【解析】

MN是AB的中垂線,則△ABN是等腰三角形,且NA=NB,即可得到∠B=∠BAN=∠C.然后對△ANC中的邊進行討論,然后在△ABC中,利用三角形內(nèi)角和定理即可求得∠B的度數(shù).解:∵把△ABC折疊,使點B與點A重合,折痕交AB于點M,交BC于點N,∴MN是AB的中垂線.∴NB=NA.∴∠B=∠BAN,∵AB=AC∴∠B=∠C.設∠B=x°,則∠C=∠BAN=x°.1)當AN=NC時,∠CAN=∠C=x°.則在△ABC中,根據(jù)三角形內(nèi)角和定理可得:4x=180,解得:x=45°則∠B=45°;2)當AN=AC時,∠ANC=∠C=x°,而∠ANC=∠B+∠BAN,故此時不成立;3)當CA=CN時,∠NAC=∠ANC=.在△ABC中,根據(jù)三角形內(nèi)角和定理得到:x+x+x+=180,解得:x=36°.故∠B的度數(shù)為45°或36°.13、9,>【解析】

(1)根據(jù)任意多邊形外角和等于360可以得到正多邊形的邊數(shù)(2)用科學計算器計算即可比較大小.【詳解】(1)正多邊形的一個外角是40°,任意多邊形外角和等于360(2)利用科學計算器計算可知,sin37.5°.故答案為(1).9,(2).>【點睛】此題重點考察學生對正多邊形外交和的理解,掌握正多邊形外角和,會用科學計算器是解題的關鍵.14、2【解析】

如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,利用正方形的性質(zhì)得到OH為正方形ABCD的內(nèi)切圓的半徑,∠OAB=45°,然后利用等腰直角三角形的性質(zhì)得OA=2OH即可解答.【詳解】解:如圖,正方形ABCD為⊙O的內(nèi)接四邊形,作OH⊥AB于H,則OH為正方形ABCD的內(nèi)切圓的半徑,∵∠OAB=45°,∴OA=2OH,∴OHOA即一個正四邊形的內(nèi)切圓半徑與外接圓半徑之比為22故答案為:22【點睛】本題考查了正多邊形與圓的關系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.理解正多邊形的有關概念.15、或【解析】分析:依據(jù)△DCM為直角三角形,需要分兩種情況進行討論:當∠CDM=90°時,△CDM是直角三角形;當∠CMD=90°時,△CDM是直角三角形,分別依據(jù)含30°角的直角三角形的性質(zhì)以及等腰直角三角形的性質(zhì),即可得到折痕MN的長.詳解:分兩種情況:①如圖,當∠CDM=90°時,△CDM是直角三角形,∵在Rt△ABC中,∠B=90°,∠A=60°,AC=2+4,∴∠C=30°,AB=AC=+2,由折疊可得,∠MDN=∠A=60°,∴∠BDN=30°,∴BN=DN=AN,∴BN=AB=,∴AN=2BN=,∵∠DNB=60°,∴∠ANM=∠DNM=60°,∴∠AMN=60°,∴AN=MN=;②如圖,當∠CMD=90°時,△CDM是直角三角形,由題可得,∠CDM=60°,∠A=∠MDN=60°,∴∠BDN=60°,∠BND=30°,∴BD=DN=AN,BN=BD,又∵AB=+2,∴AN=2,BN=,過N作NH⊥AM于H,則∠ANH=30°,∴AH=AN=1,HN=,由折疊可得,∠AMN=∠DMN=45°,∴△MNH是等腰直角三角形,∴HM=HN=,∴MN=,故答案為:或.點睛:本題考查了翻折變換-折疊問題,等腰直角三角形的性質(zhì),正確的作出圖形是解題的關鍵.折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.16、100mm1【解析】

首先根據(jù)三視圖得到兩個長方體的長,寬,高,在分別表示出每個長方體的表面積,最后減去上面的長方體與下面的長方體的接觸面積即可.【詳解】根據(jù)三視圖可得:上面的長方體長4mm,高4mm,寬1mm,下面的長方體長8mm,寬6mm,高1mm,∴立體圖形的表面積是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm1).故答案為100mm1.【點睛】此題主要考查了由三視圖判斷幾何體以及求幾何體的表面積,根據(jù)圖形看出長方體的長,寬,高是解題的關鍵.三、解答題(共8題,共72分)17、解:(1)AF與圓O的相切.理由為:如圖,連接OC,∵PC為圓O切線,∴CP⊥OC.∴∠OCP=90°.∵OF∥BC,∴∠AOF=∠B,∠COF=∠OCB.∵OC=OB,∴∠OCB=∠B.∴∠AOF=∠COF.∵在△AOF和△COF中,OA=OC,∠AOF=∠COF,OF=OF,∴△AOF≌△COF(SAS).∴∠OAF=∠OCF=90°.∴AF為圓O的切線,即AF與⊙O的位置關系是相切.(2)∵△AOF≌△COF,∴∠AOF=∠COF.∵OA=OC,∴E為AC中點,即AE=CE=AC,OE⊥AC.∵OA⊥AF,∴在Rt△AOF中,OA=4,AF=3,根據(jù)勾股定理得:OF=1.∵S△AOF=?OA?AF=?OF?AE,∴AE=.∴AC=2AE=.【解析】試題分析:(1)連接OC,先證出∠3=∠2,由SAS證明△OAF≌△OCF,得對應角相等∠OAF=∠OCF,再根據(jù)切線的性質(zhì)得出∠OCF=90°,證出∠OAF=90°,即可得出結(jié)論;(2)先由勾股定理求出OF,再由三角形的面積求出AE,根據(jù)垂徑定理得出AC=2AE.試題解析:(1)連接OC,如圖所示:∵AB是⊙O直徑,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切線,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切線;(2)∵⊙O的半徑為4,AF=3,∠OAF=90°,∴OF==1∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面積=AF?OA=OF?AE,∴3×4=1×AE,解得:AE=,∴AC=2AE=.考點:1.切線的判定與性質(zhì);2.勾股定理;3.相似三角形的判定與性質(zhì).18、(1),;(2)點C的坐標為或;(3)2.【解析】試題分析:(1)由點A的坐標利用反比例函數(shù)圖象上點的坐標特征即可求出a值,從而得出反比例函數(shù)解析式;由勾股定理得出OA的長度從而得出點B的坐標,由點A、B的坐標利用待定系數(shù)法即可求出直線AB的解析式;

(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,根據(jù)三角形的面積公式結(jié)合△ABC的面積是8,可得出關于m的含絕對值符號的一元一次方程,解方程即可得出m值,從而得出點C的坐標;

(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,根據(jù)反比例函數(shù)解析式以及平移的性質(zhì)找出點E、F、M、N的坐標,根據(jù)EM∥FN,且EM=FN,可得出四邊形EMNF為平行四邊形,再根據(jù)平行四邊形的面積公式求出平行四邊形EMNF的面積S,根據(jù)平移的性質(zhì)即可得出C1平移至C2處所掃過的面積正好為S.試題解析:(1)∵點A(4,3)在反比例函數(shù)y=的圖象上,∴a=4×3=12,∴反比例函數(shù)解析式為y=;∵OA==1,OA=OB,點B在y軸負半軸上,∴點B(0,﹣1).把點A(4,3)、B(0,﹣1)代入y=kx+b中,得:,解得:,∴一次函數(shù)的解析式為y=2x﹣1.(2)設點C的坐標為(m,0),令直線AB與x軸的交點為D,如圖1所示.令y=2x﹣1中y=0,則x=,∴D(,0),∴S△ABC=CD?(yA﹣yB)=|m﹣|×[3﹣(﹣1)]=8,解得:m=或m=.故當△ABC的面積是8時,點C的坐標為(,0)或(,0).(3)設點E的橫坐標為1,點F的橫坐標為6,點M、N分別對應點E、F,如圖2所示.令y=中x=1,則y=12,∴E(1,12),;令y=中x=4,則y=3,∴F(4,3),∵EM∥FN,且EM=FN,∴四邊形EMNF為平行四邊形,∴S=EM?(yE﹣yF)=3×(12﹣3)=2.C1平移至C2處所掃過的面積正好為平行四邊形EMNF的面積.故答案為2.【點睛】運用了反比例函數(shù)圖象上點的坐標特征、待定系數(shù)法求函數(shù)解析式、三角形的面積以及平行四邊形的面積,解題的關鍵是:(1)利用待定系數(shù)法求出函數(shù)解析式;(2)找出關于m的含絕對值符號的一元一次方程;(3)求出平行四邊形EMNF的面積.本題屬于中檔題,難度不小,解決(3)時,巧妙的借助平行四邊的面積公式求出C1平移至C2處所掃過的面積,此處要注意數(shù)形結(jié)合的重要性.19、(1)(2)﹣1<x<0或x>1.(3)四邊形OABC是平行四邊形;理由見解析.【解析】

(1)設反比例函數(shù)的解析式為(k>0),然后根據(jù)條件求出A點坐標,再求出k的值,進而求出反比例函數(shù)的解析式.(2)直接由圖象得出正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍;(3)首先求出OA的長度,結(jié)合題意CB∥OA且CB=,判斷出四邊形OABC是平行四邊形,再證明OA=OC【詳解】解:(1)設反比例函數(shù)的解析式為(k>0)∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴解得m=﹣1.∴A(﹣1,﹣2).又∵點A在上,∴,解得k=2.,∴反比例函數(shù)的解析式為.(2)觀察圖象可知正比例函數(shù)值大于反比例函數(shù)值時自變量x的取值范圍為﹣1<x<0或x>1.(3)四邊形OABC是菱形.證明如下:∵A(﹣1,﹣2),∴.由題意知:CB∥OA且CB=,∴CB=OA.∴四邊形OABC是平行四邊形.∵C(2,n)在上,∴.∴C(2,1).∴.∴OC=OA.∴平行四邊形OABC是菱形.20、(1)(2,﹣2);(2)(1,0);(3)1.【解析】試題分析:(1)根據(jù)平移的性質(zhì)得出平移后的圖從而得到點的坐標;(2)根據(jù)位似圖形的性質(zhì)得出對應點位置,從而得到點的坐標;(3)利用等腰直角三角形的性質(zhì)得出△A2B2C2的面積.試題解析:(1)如圖所示:C1(2,﹣2);故答案為(2,﹣2);(2)如圖所示:C2(1,0);故答案為(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面積是:××=1平方單位.故答案為1.考點:1、平移變換;2、位似變換;3、勾股定理的逆定理21、(1)①∠BEF=60°;②AB'∥EF,證明見解析;(2)△CB′F周長的最小值5+5;(3)PB′=.【解析】

(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°;②依據(jù)AE=B′E,可得∠EAB′=∠EB′A,再根據(jù)∠BEF=∠B′EF,即可得到∠BEF=∠BAB′,進而得出EF∥AB′;(2)由折疊可得,CF+B′F=CF+BF=BC=10,依據(jù)B′E+B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,進而得到B′C最小值為5﹣5,故△CB′F周長的最小值=10+5﹣5=5+5;(3)將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.依據(jù)∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的長度.【詳解】(1)①當△AEB′為等邊三角形時,∠AEB′=60°,由折疊可得,∠BEF=∠BEB′=×120°=60°,故答案為60;②AB′∥EF,證明:∵點E是AB的中點,∴AE=BE,由折疊可得BE=B′E,∴AE=B′E,∴∠EAB′=∠EB′A,又∵∠BEF=∠B′EF,∴∠BEF=∠BAB′,∴EF∥AB′;(2)如圖,點B′的軌跡為半圓,由折疊可得,BF=B′F,∴CF+B′F=CF+BF=BC=10,∵B′E+B′C≥CE,∴B′C≥CE﹣B′E=5﹣5,∴B′C最小值為5﹣5,∴△CB′F周長的最小值=10+5﹣5=5+5;(3)如圖,連接AB′,易得∠AB′B=90°,將△ABB′和△APB′分別沿AB、AC翻折到△ABM和△APN處,延長MB、NP相交于點Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四邊形AMQN為正方形,由AB=10,BB′=6,可得AB′=8,∴QM=QN=AB′=8,設PB′=PN=x,則BP=6+x,BQ=8﹣6=2,QP=8﹣x.∵∠BQP=90°,∴22+(8﹣x)2=(6+x)2,解得:x=,∴PB′=x=.【點睛】本題屬于四邊形綜合題,主要考查了折疊的性質(zhì),等邊三角形的性質(zhì),正方形的判定與性質(zhì)以及勾股定理的綜合運用,解題的關鍵是設要求的線段長為x,然后根據(jù)折疊和軸對稱的性質(zhì)用含x的代數(shù)式表示其他線段的長度,選擇適當?shù)闹苯侨切?,運用勾股定理列出方程求出答案.22、(1)購買A型學習用品400件,B型學習用品600件.(2)最多購買B型學習用品1件【解析】

(1)設購買A型學習用品x件,B型學習用品y件,就有x+y=1000,20x+30y=26000,由這兩個方程構(gòu)成方程組求出其解就可以得出結(jié)論.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,根據(jù)這批學習用品的錢不超過210元建立不等式求出其解即可.【詳解】解:(1)設購買A型學習用品x件,B型學習用品y件,由題意,得,解得:.答:購買A型學習用品400件,B型學習用品600件.(2)設最多可以購買B型產(chǎn)品a件,則A型產(chǎn)品(1000﹣a)件,由題意,得20(1000﹣a)+30a≤210,解得:a≤1.答:最多購買B型學習用品1件23、(1)80,100;(2)100件,22000元;(3)答案見解析.【解析】

(1)先設A型商品的進價為a元/件,求得B型商品的進價為(a+20)元/件,由題意得等式,解得a=80,再檢驗a是否符合條件,得到答案.(2)先設購機A型商品x件,則由題意可得到等式80x+100(200﹣x)≤18000,解得,x≥100;再設獲得的利潤為w元,由題意可得w=(160﹣80)x+(240﹣100)(200﹣x)=﹣60x+28000,當x=100時代入w=﹣60x+28000,從而得答案.(3)設獲得的利潤為w元,由題意可得w(a﹣60)x+28000,分類討論:當50<a<60時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論